hyperledger-fabricdocs Documentation
Release master

hyperledger

Sep 02, 2020

Contents

10

11

12

13

14

15

Introduction

What’s new in v1.3
Release notes

Key Concepts

Getting Started
Tutorials

Operations Guides
Commands Reference
Architecture Reference
Frequently Asked Questions
Contributions Welcome!
Glossary

Releases

Still Have Questions?

Status

11

13

79

85

181

239

285

319

325

349

359

361

363

hyperledger-fabricdocs Documentation, Release master

~ “/« HYPERLEDGER

%Y FABRIC

Enterprise grade permissioned distributed ledger platform that offers modularity and versatility for a broad set of
industry use cases.

Contents 1

hyperledger-fabricdocs Documentation, Release master

2 Contents

CHAPTER 1

Introduction

In general terms, a blockchain is an immutable transaction ledger, maintained within a distributed network of peer
nodes. These nodes each maintain a copy of the ledger by applying transactions that have been validated by a consensus
protocol, grouped into blocks that include a hash that bind each block to the preceding block.

The first and most widely recognized application of blockchain is the Bitcoin cryptocurrency, though others have
followed in its footsteps. Ethereum, an alternative cryptocurrency, took a different approach, integrating many of the
same characteristics as Bitcoin but adding smart contracts to create a platform for distributed applications. Bitcoin
and Ethereum fall into a class of blockchain that we would classify as public permissionless blockchain technology.
Basically, these are public networks, open to anyone, where participants interact anonymously.

As the popularity of Bitcoin, Ethereum and a few other derivative technologies grew, interest in applying the underlying
technology of the blockchain, distributed ledger and distributed application platform to more innovative enterprise
use cases also grew. However, many enterprise use cases require performance characteristics that the permissionless
blockchain technologies are unable (presently) to deliver. In addition, in many use cases, the identity of the participants
is a hard requirement, such as in the case of financial transactions where Know- Your-Customer (KYC) and Anti-Money
Laundering (AML) regulations must be followed.

For enterprise use, we need to consider the following requirements:
« Participants must be identified/identifiable
* Networks need to be permissioned
* High transaction throughput performance
* Low latency of transaction confirmation
* Privacy and confidentiality of transactions and data pertaining to business transactions

While many early blockchain platforms are currently being adapted for enterprise use, Hyperledger Fabric has been
designed for enterprise use from the outset. The following sections describe how Hyperledger Fabric (Fabric) differ-
entiates itself from other blockchain platforms and describes some of the motivation for its architectural decisions.

https://en.wikipedia.org/wiki/Bitcoin

hyperledger-fabricdocs Documentation, Release master

1.1 Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed ledger technology (DLT) platform,
designed for use in enterprise contexts, that delivers some key differentiating capabilities over other popular distributed
ledger or blockchain platforms.

One key point of differentiation is that Hyperledger was established under the Linux Foundation, which itself has a
long and very successful history of nurturing open source projects under open governance that grow strong sustaining
communities and thriving ecosystems. Hyperledger is governed by a diverse technical steering committee, and the Hy-
perledger Fabric project by a diverse set of maintainers from multiple organizations. It has a development community
that has grown to over 35 organizations and nearly 200 developers since its earliest commits.

Fabric has a highly modular and configurable architecture, enabling innovation, versatility and optimization for a
broad range of industry use cases including banking, finance, insurance, healthcare, human resources, supply chain
and even digital music delivery.

Fabric is the first distributed ledger platform to support smart contracts authored in general-purpose programming
languages such as Java, Go and Node.js, rather than constrained domain-specific languages (DSL). This means that
most enterprises already have the skill set needed to develop smart contracts, and no additional training to learn a new
language or DSL is needed.

The Fabric platform is also permissioned, meaning that, unlike with a public permissionless network, the participants
are known to each other, rather than anonymous and therefore fully untrusted. This means that while the participants
may not fully trust one another (they may, for example, be competitors in the same industry), a network can be operated
under a governance model that is built off of what trust does exist between participants, such as a legal agreement or
framework for handling disputes.

One of the most important of the platform’s differentiators is its support for pluggable consensus protocols that
enable the platform to be more effectively customized to fit particular use cases and trust models. For instance, when
deployed within a single enterprise, or operated by a trusted authority, fully byzantine fault tolerant consensus might
be considered unnecessary and an excessive drag on performance and throughput. In situations such as that, a crash
fault-tolerant (CFT) consensus protocol might be more than adequate whereas, in a multi-party, decentralized use case,
a more traditional byzantine fault tolerant (BFT) consensus protocol might be required.

Fabric can leverage consensus protocols that do not require a native cryptocurrency to incent costly mining or to
fuel smart contract execution. Avoidance of a cryptocurrency reduces some significant risk/attack vectors, and absence
of cryptographic mining operations means that the platform can be deployed with roughly the same operational cost
as any other distributed system.

The combination of these differentiating design features makes Fabric one of the better performing platforms avail-
able today both in terms of transaction processing and transaction confirmation latency, and it enables privacy and
confidentiality of transactions and the smart contracts (what Fabric calls “chaincode’) that implement them.

Let’s explore these differentiating features in more detail.

1.2 Modularity

Hyperledger Fabric has been specifically architected to have a modular architecture. Whether it is pluggable con-
sensus, pluggable identity management protocols such as LDAP or OpenID Connect, key management protocols or
cryptographic libraries, the platform has been designed at its core to be configured to meet the diversity of enterprise
use case requirements.

At a high level, Fabric is comprised of the following modular components:

* A pluggable ordering service establishes consensus on the order of transactions and then broadcasts blocks to
peers.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

hyperledger-fabricdocs Documentation, Release master

* A pluggable membership service provider is responsible for associating entities in the network with crypto-
graphic identities.

* An optional peer-to-peer gossip service disseminates the blocks output by ordering service to other peers.

e Smart contracts (“‘chaincode”) run within a container environment (e.g. Docker) for isolation. They can be
written in standard programming languages but do not have direct access to the ledger state.

» The ledger can be configured to support a variety of DBMSs.

* A pluggable endorsement and validation policy enforcement that can be independently configured per applica-
tion.

There is fair agreement in the industry that there is no “one blockchain to rule them all”. Hyperledger Fabric can be
configured in multiple ways to satisfy the diverse solution requirements for multiple industry use cases.

1.3 Permissioned vs Permissionless Blockchains

In a permissionless blockchain, virtually anyone can participate, and every participant is anonymous. In such a context,
there can be no trust other than that the state of the blockchain, prior to a certain depth, is immutable. In order
to mitigate this absence of trust, permissionless blockchains typically employ a “mined” native cryptocurrency or
transaction fees to provide economic incentive to offset the extraordinary costs of participating in a form of byzantine
fault tolerant consensus based on “proof of work” (PoW).

Permissioned blockchains, on the other hand, operate a blockchain amongst a set of known, identified and often vetted
participants operating under a governance model that yields a certain degree of trust. A permissioned blockchain
provides a way to secure the interactions among a group of entities that have a common goal but which may not fully
trust each other. By relying on the identities of the participants, a permissioned blockchain can use more traditional
crash fault tolerant (CFT) or byzantine fault tolerant (BFT) consensus protocols that do not require costly mining.

Additionally, in such a permissioned context, the risk of a participant intentionally introducing malicious code through
a smart contract is diminished. First, the participants are known to one another and all actions, whether submitting
application transactions, modifying the configuration of the network or deploying a smart contract are recorded on the
blockchain following an endorsement policy that was established for the network and relevant transaction type. Rather
than being completely anonymous, the guilty party can be easily identified and the incident handled in accordance
with the terms of the governance model.

1.4 Smart Contracts

A smart contract, or what Fabric calls “chaincode”, functions as a trusted distributed application that gains its secu-
rity/trust from the blockchain and the underlying consensus among the peers. It is the business logic of a blockchain
application.

There are three key points that apply to smart contracts, especially when applied to a platform:
* many smart contracts run concurrently in the network,
* they may be deployed dynamically (in many cases by anyone), and
* application code should be treated as untrusted, potentially even malicious.

Most existing smart-contract capable blockchain platforms follow an order-execute architecture in which the consen-
sus protocol:

* validates and orders transactions then propagates them to all peer nodes,

* each peer then executes the transactions sequentially.

1.3. Permissioned vs Permissionless Blockchains 5

hyperledger-fabricdocs Documentation, Release master

The order-execute architecture can be found in virtually all existing blockchain systems, ranging from pub-
lic/permissionless platforms such as Ethereum (with PoW-based consensus) to permissioned platforms such as Ten-
dermint, Chain, and Quorum.

Smart contracts executing in a blockchain that operates with the order-execute architecture must be deterministic;
otherwise, consensus might never be reached. To address the non-determinism issue, many platforms require that the
smart contracts be written in a non-standard, or domain-specific language (such as Solidity) so that non-deterministic
operations can be eliminated. This hinders wide-spread adoption because it requires developers writing smart contracts
to learn a new language and may lead to programming errors.

Further, since all transactions are executed sequentially by all nodes, performance and scale is limited. The fact that
the smart contract code executes on every node in the system demands that complex measures be taken to protect the
overall system from potentially malicious contracts in order to ensure resiliency of the overall system.

1.5 A New Approach

Fabric introduces a new architecture for transactions that we call execute-order-validate. It addresses the resiliency,
flexibility, scalability, performance and confidentiality challenges faced by the order-execute model by separating the
transaction flow into three steps:

* execute a transaction and check its correctness, thereby endorsing it,
* order transactions via a (pluggable) consensus protocol, and
* validate transactions against an application-specific endorsement policy before committing them to the ledger

This design departs radically from the order-execute paradigm in that Fabric executes transactions before reaching
final agreement on their order.

In Fabric, an application-specific endorsement policy specifies which peer nodes, or how many of them, need to vouch
for the correct execution of a given smart contract. Thus, each transaction need only be executed (endorsed) by the
subset of the peer nodes necessary to satisfy the transaction’s endorsement policy. This allows for parallel execution
increasing overall performance and scale of the system. This first phase also eliminates any non-determinism, as
inconsistent results can be filtered out before ordering.

Because we have eliminated non-determinism, Fabric is the first blockchain technology that enables use of standard
programming languages. In the 1.1.0 release, smart contracts can be written in either Go or Node.js, while there are
plans to support other popular languages including Java in subsequent releases.

1.6 Privacy and Confidentiality

As we have discussed, in a public, permissionless blockchain network that leverages PoW for its consensus model,
transactions are executed on every node. This means that neither can there be confidentiality of the contracts them-
selves, nor of the transaction data that they process. Every transaction, and the code that implements it, is visible to
every node in the network. In this case, we have traded confidentiality of contract and data for byzantine fault tolerant
consensus delivered by PoW.

This lack of confidentiality can be problematic for many business/enterprise use cases. For example, in a network of
supply-chain partners, some consumers might be given preferred rates as a means of either solidifying a relationship,
or promoting additional sales. If every participant can see every contract and transaction, it becomes impossible to
maintain such business relationships in a completely transparent network — everyone will want the preferred rates!

As a second example, consider the securities industry, where a trader building a position (or disposing of one) would
not want her competitors to know of this, or else they will seek to get in on the game, weakening the trader’s gambit.

6 Chapter 1. Introduction

https://ethereum.org/
http://tendermint.com/
http://tendermint.com/
http://chain.com/
http://www.jpmorgan.com/global/Quorum
https://solidity.readthedocs.io/en/v0.4.23/

hyperledger-fabricdocs Documentation, Release master

In order to address the lack of privacy and confidentiality for purposes of delivering on enterprise use case require-
ments, blockchain platforms have adopted a variety of approaches. All have their trade-offs.

Encrypting data is one approach to providing confidentiality; however, in a permissionless network leveraging PoW
for its consensus, the encrypted data is sitting on every node. Given enough time and computational resource, the
encryption could be broken. For many enterprise use cases, the risk that their information could become compromised
is unacceptable.

Zero knowledge proofs (ZKP) are another area of research being explored to address this problem, the trade-off here
being that, presently, computing a ZKP requires considerable time and computational resources. Hence, the trade-off
in this case is performance for confidentiality.

In a permissioned context that can leverage alternate forms of consensus, one might explore approaches that restrict
the distribution of confidential information exclusively to authorized nodes.

Hyperledger Fabric, being a permissioned platform, enables confidentiality through its channel architecture. Basically,
participants on a Fabric network can establish a “channel” between the subset of participants that should be granted
visibility to a particular set of transactions. Think of this as a network overlay. Thus, only those nodes that participate in
a channel have access to the smart contract (chaincode) and data transacted, preserving the privacy and confidentiality
of both.

To improve upon its privacy and confidentiality capabilities, Fabric has added support for private data and is working
on zero knowledge proofs (ZKP) available in the future. More on this as it becomes available.

1.7 Pluggable Consensus

The ordering of transactions is delegated to a modular component for consensus that is logically decoupled from
the peers that execute transactions and maintain the ledger. Specifically, the ordering service. Since consensus is
modular, its implementation can be tailored to the trust assumption of a particular deployment or solution. This
modular architecture allows the platform to rely on well-established toolkits for CFT (crash fault-tolerant) or BFT
(byzantine fault-tolerant) ordering.

In the currently available releases, Fabric offers a CFT ordering service implemented with Kafka and Zookeeper. In
subsequent releases, Fabric will deliver a Raft consensus ordering service implemented with etcd/Raft and a fully
decentralized BFT ordering service.

Note also that these are not mutually exclusive. A Fabric network can have multiple ordering services supporting
different applications or application requirements.

1.8 Performance and Scalability

Performance of a blockchain platform can be affected by many variables such as transaction size, block size, network
size, as well as limits of the hardware, etc. The Hyperledger community is currently developing a draft set of measures
within the Performance and Scale working group, along with a corresponding implementation of a benchmarking
framework called Hyperledger Caliper.

While that work continues to be developed and should be seen as a definitive measure of blockchain platform per-
formance and scale characteristics, a team from IBM Research has published a peer reviewed paper that evaluated
the architecture and performance of Hyperledger Fabric. The paper offers an in-depth discussion of the architec-
ture of Fabric and then reports on the team’s performance evaluation of the platform using a preliminary release of
Hyperledger Fabric v1.1.

The benchmarking efforts that the research team did yielded a significant number of performance improvements for
the Fabric v1.1.0 release that more than doubled the overall performance of the platform from the v1.0.0 release levels.

1.7. Pluggable Consensus 7

./private-data/private-data.html
https://kafka.apache.org/
https://zookeeper.apache.org/
https://raft.github.io/
https://docs.google.com/document/d/1DQ6PqoeIH0pCNJSEYiw7JVbExDvWh_ZRVhWkuioG4k0/edit#heading=h.t3gztry2ja8i
https://wiki.hyperledger.org/projects/caliper
https://arxiv.org/abs/1801.10228v1

hyperledger-fabricdocs Documentation, Release master

1.9 Conclusion

Any serious evaluation of blockchain platforms should include Hyperledger Fabric in its short list.

Combined, the differentiating capabilities of Fabric make it a highly scalable system for permissioned blockchains
supporting flexible trust assumptions that enable the platform to support a wide range of industry use cases ranging
from government, to finance, to supply-chain logistics, to healthcare and so much more.

More importantly, Hyperledger Fabric is the most active of the (currently) ten Hyperledger projects. The community
building around the platform is growing steadily, and the innovation delivered with each successive release far out-
paces any of the other enterprise blockchain platforms.

1.10 Acknowledgement

The preceding is derived from the peer reviewed “Hyperledger Fabric: A Distributed Operating System for Per-
missioned Blockchains™ - Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan,
Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolic, Sharon Weed Cocco, Jason Yellick

8 Chapter 1. Introduction

https://arxiv.org/abs/1801.10228v1
https://arxiv.org/abs/1801.10228v1

CHAPTER 2

What’s new in v1.3

A quick rundown of the new features and documentation in the v1.3 release of Hyperledger Fabric:

2.1

New features

e MSP Implementation with Identity Mixer: A way to keep identities anonymous and unlinkable through the use

2.2

of zero-knowledge proofs. There is a tool that can generate Identity Mixer credentials in test environments
known as idexmigen, the documentation for which can be found in /dentity Mixer MSP configuration generator
(idemixgen).

Setting key-level endorsement policies: Allows the default chaincode-level endorsement policy to be overridden
by a per-key endorsement policy.

Query the CouchDB State Database With Pagination: Clients can now page through result sets from chaincode
queries, making it feasible to support large result sets with high performance.

Chaincode for Developers: As an addition to the current Fabric support for chaincode written in Go and node.js,
Java is now supported. You can find a javadoc for this here.

Peer channel-based event services: The peer channel-based event service itself is not new (it first debuted in
v1.1), but the v1.3 release marks the end of the old event hub. Applications using the old event hub must switch
over to the new peer channel-based event service prior to upgrading to v1.3.

New tutorials

Upgrading to the Newest Version of Fabric: Leverages the BYFN network to show how an upgrade flow should
work. Includes both a script (which can serve as a template for upgrades), as well as the individual commands.

Query the CouchDB State Database With Pagination: Expands the current CouchDB tutorial to add pagination.

https://fabric-chaincode-java.github.io/

hyperledger-fabricdocs Documentation, Release master

2.3 Other new documentation

* Blockchain network: Conceptual documentation that shows how the parts of a network interact with each other.
The initial version of this document was added in v1.2.

10 Chapter 2. What’s new in v1.3

CHAPTER 3

Release notes

For more information, including FAB numbers for the issues and code reviews that made up these changes (in addition
to other hygiene/performance/bug fixes we did not explicitly document), check out the release notes. Note that these
links will not work on the release candidate, only on the GA release.

¢ Fabric release notes.

¢ Fabric CA release notes.

11

https://github.com/hyperledger/fabric/releases/tag/v1.3.0
https://github.com/hyperledger/fabric-ca/releases/tag/v1.3.0

hyperledger-fabricdocs Documentation, Release master

12 Chapter 3. Release notes

CHAPTER 4

Key Concepts

4.1 Introduction

Hyperledger Fabric is a platform for distributed ledger solutions underpinned by a modular architecture delivering high
degrees of confidentiality, resiliency, flexibility, and scalability. It is designed to support pluggable implementations
of different components and accommodate the complexity and intricacies that exist across the economic ecosystem.

We recommend first-time users begin by going through the rest of the introduction below in order to gain familiarity
with how blockchains work and with the specific features and components of Hyperledger Fabric.

Once comfortable — or if you’re already familiar with blockchain and Hyperledger Fabric — go to Getting Started
and from there explore the demos, technical specifications, APIs, etc.

4.1.1 What is a Blockchain?

A Distributed Ledger

At the heart of a blockchain network is a distributed ledger that records all the transactions that take place on the
network.

A blockchain ledger is often described as decentralized because it is replicated across many network participants,
each of whom collaborate in its maintenance. We’ll see that decentralization and collaboration are powerful attributes
that mirror the way businesses exchange goods and services in the real world.

13

hyperledger-fabricdocs Documentation, Release master

In addition to being decentralized and collaborative, the information recorded to a blockchain is append-only, using
cryptographic techniques that guarantee that once a transaction has been added to the ledger it cannot be modified.
This property of “immutability” makes it simple to determine the provenance of information because participants can
be sure information has not been changed after the fact. It’s why blockchains are sometimes described as systems of
proof.

Smart Contracts

To support the consistent update of information — and to enable a whole host of ledger functions (transacting, query-
ing, etc) — a blockchain network uses smart contracts to provide controlled access to the ledger.

14 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

written to
the ledger

O

updating
transaction

Smart contract

Smart contracts are not only a key mechanism for encapsulating information and keeping it simple across the network,
they can also be written to allow participants to execute certain aspects of transactions automatically.

A smart contract can, for example, be written to stipulate the cost of shipping an item where the shipping charge
changes depending on how quickly the item arrives. With the terms agreed to by both parties and written to the ledger,
the appropriate funds change hands automatically when the item is received.

Consensus

The process of keeping the ledger transactions synchronized across the network — to ensure that ledgers update only
when transactions are approved by the appropriate participants, and that when ledgers do update, they update with the
same transactions in the same order — is called consensus.

4.1. Introduction 15

hyperledger-fabricdocs Documentation, Release master

Ol
O

You’ll learn a lot more about ledgers, smart contracts and consensus later. For now, it’s enough to think of a blockchain
as a shared, replicated transaction system which is updated via smart contracts and kept consistently synchronized
through a collaborative process called consensus.

4.1.2 Why is a Blockchain useful?

Today’s Systems of Record

The transactional networks of today are little more than slightly updated versions of networks that have existed since
business records have been kept. The members of a business network transact with each other, but they maintain
separate records of their transactions. And the things they re transacting — whether it’s Flemish tapestries in the 16th
century or the securities of today — must have their provenance established each time they’re sold to ensure that the
business selling an item possesses a chain of title verifying their ownership of it.

What you’re left with is a business network that looks like this:

16 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Modern technology has taken this process from stone tablets and paper folders to hard drives and cloud platforms, but
the underlying structure is the same. Unified systems for managing the identity of network participants do not exist,
establishing provenance is so laborious it takes days to clear securities transactions (the world volume of which is
numbered in the many trillions of dollars), contracts must be signed and executed manually, and every database in the
system contains unique information and therefore represents a single point of failure.

It’s impossible with today’s fractured approach to information and process sharing to build a system of record that
spans a business network, even though the needs of visibility and trust are clear.

The Blockchain Difference

What if, instead of the rat’s nest of inefficiencies represented by the “modern” system of transactions, business net-
works had standard methods for establishing identity on the network, executing transactions, and storing data? What
if establishing the provenance of an asset could be determined by looking through a list of transactions that, once
written, cannot be changed, and can therefore be trusted?

That business network would look more like this:

4.1. Introduction 17

hyperledger-fabricdocs Documentation, Release master

EEEEEEE,

]

OO OO0

This is a blockchain network, wherein every participant has their own replicated copy of the ledger. In addition to
ledger information being shared, the processes which update the ledger are also shared. Unlike today’s systems, where
a participant’s private programs are used to update their private ledgers, a blockchain system has shared programs
to update shared ledgers.

With the ability to coordinate their business network through a shared ledger, blockchain networks can reduce the
time, cost, and risk associated with private information and processing while improving trust and visibility.

You now know what blockchain is and why it’s useful. There are a lot of other details that are important, but they all
relate to these fundamental ideas of the sharing of information and processes.

4.1.3 What is Hyperledger Fabric?

The Linux Foundation founded the Hyperledger project in 2015 to advance cross-industry blockchain technologies.
Rather than declaring a single blockchain standard, it encourages a collaborative approach to developing blockchain
technologies via a community process, with intellectual property rights that encourage open development and the
adoption of key standards over time.

Hyperledger Fabric is one of the blockchain projects within Hyperledger. Like other blockchain technologies, it has a
ledger, uses smart contracts, and is a system by which participants manage their transactions.

18 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Where Hyperledger Fabric breaks from some other blockchain systems is that it is private and permissioned. Rather
than an open permissionless system that allows unknown identities to participate in the network (requiring protocols
like “proof of work™ to validate transactions and secure the network), the members of a Hyperledger Fabric network
enroll through a trusted Membership Service Provider (MSP).

Hyperledger Fabric also offers several pluggable options. Ledger data can be stored in multiple formats, consensus
mechanisms can be swapped in and out, and different MSPs are supported.

Hyperledger Fabric also offers the ability to create channels, allowing a group of participants to create a separate ledger
of transactions. This is an especially important option for networks where some participants might be competitors and
not want every transaction they make — a special price they’re offering to some participants and not others, for
example — known to every participant. If two participants form a channel, then those participants — and no others —
have copies of the ledger for that channel.

Shared Ledger

Hyperledger Fabric has a ledger subsystem comprising two components: the world state and the transaction log.
Each participant has a copy of the ledger to every Hyperledger Fabric network they belong to.

The world state component describes the state of the ledger at a given point in time. It’s the database of the ledger. The
transaction log component records all transactions which have resulted in the current value of the world state; it’s the
update history for the world state. The ledger, then, is a combination of the world state database and the transaction
log history.

The ledger has a replaceable data store for the world state. By default, this is a LevelDB key-value store database.
The transaction log does not need to be pluggable. It simply records the before and after values of the ledger database
being used by the blockchain network.

Smart Contracts

Hyperledger Fabric smart contracts are written in chaincode and are invoked by an application external to the
blockchain when that application needs to interact with the ledger. In most cases, chaincode interacts only with
the database component of the ledger, the world state (querying it, for example), and not the transaction log.

Chaincode can be implemented in several programming languages. Currently, Go and Node are supported.
Privacy

Depending on the needs of a network, participants in a Business-to-Business (B2B) network might be extremely
sensitive about how much information they share. For other networks, privacy will not be a top concern.

Hyperledger Fabric supports networks where privacy (using channels) is a key operational requirement as well as
networks that are comparatively open.

Consensus

Transactions must be written to the ledger in the order in which they occur, even though they might be between
different sets of participants within the network. For this to happen, the order of transactions must be established and a
method for rejecting bad transactions that have been inserted into the ledger in error (or maliciously) must be put into
place.

This is a thoroughly researched area of computer science, and there are many ways to achieve it, each with different
trade-offs. For example, PBFT (Practical Byzantine Fault Tolerance) can provide a mechanism for file replicas to
communicate with each other to keep each copy consistent, even in the event of corruption. Alternatively, in Bitcoin,
ordering happens through a process called mining where competing computers race to solve a cryptographic puzzle
which defines the order that all processes subsequently build upon.

Hyperledger Fabric has been designed to allow network starters to choose a consensus mechanism that best represents
the relationships that exist between participants. As with privacy, there is a spectrum of needs; from networks that are
highly structured in their relationships to those that are more peer-to-peer.

We’ll learn more about the Hyperledger Fabric consensus mechanisms, which currently include SOLO and Kafka.

4.1. Introduction 19

hyperledger-fabricdocs Documentation, Release master

4.1.4 Where can | learn more?

* Identity (conceptual documentation)

A conceptual doc that will take you through the critical role identities play in a Fabric network (using an established
PKI structure and x.509 certificates).

* Membership (conceptual documentation)

Talks through the role of a Membership Service Provider (MSP), which converts identities into roles in a Fabric
network.

* Peers (conceptual documentation)

Peers — owned by organizations — host the ledger and smart contracts and make up the physical structure of a Fabric
network.

e Building Your First Network (tutorial)

Learn how to download Fabric binaries and bootstrap your own sample network with a sample script. Then tear down
the network and learn how it was constructed one step at a time.

» Writing Your First Application (tutorial)

Deploys a very simple network — even simpler than Build Your First Network — to use with a simple smart contract
and application.

* Transaction Flow
A high level look at a sample transaction flow.
* Hyperledger Fabric Model

A high level look at some of components and concepts brought up in this introduction as well as a few others and
describes how they work together in a sample transaction flow.

4.2 Hyperledger Fabric Functionalities

Hyperledger Fabric is an implementation of distributed ledger technology (DLT) that delivers enterprise-ready net-
work security, scalability, confidentiality and performance, in a modular blockchain architecture. Hyperledger Fabric
delivers the following blockchain network functionalities:

4.2.1 ldentity management

To enable permissioned networks, Hyperledger Fabric provides a membership identity service that manages user IDs
and authenticates all participants on the network. Access control lists can be used to provide additional layers of
permission through authorization of specific network operations. For example, a specific user ID could be permitted
to invoke a chaincode application, but be blocked from deploying new chaincode.

4.2.2 Privacy and confidentiality

Hyperledger Fabric enables competing business interests, and any groups that require private, confidential transac-
tions, to coexist on the same permissioned network. Private channels are restricted messaging paths that can be used
to provide transaction privacy and confidentiality for specific subsets of network members. All data, including trans-
action, member and channel information, on a channel are invisible and inaccessible to any network members not
explicitly granted access to that channel.

20 Chapter 4. Key Concepts

identity/identity.html
membership/membership.html
peers/peers.html

hyperledger-fabricdocs Documentation, Release master

4.2.3 Efficient processing

Hyperledger Fabric assigns network roles by node type. To provide concurrency and parallelism to the network,
transaction execution is separated from transaction ordering and commitment. Executing transactions prior to ordering
them enables each peer node to process multiple transactions simultaneously. This concurrent execution increases
processing efficiency on each peer and accelerates delivery of transactions to the ordering service.

In addition to enabling parallel processing, the division of labor unburdens ordering nodes from the demands of
transaction execution and ledger maintenance, while peer nodes are freed from ordering (consensus) workloads. This
bifurcation of roles also limits the processing required for authorization and authentication; all peer nodes do not have
to trust all ordering nodes, and vice versa, so processes on one can run independently of verification by the other.

4.2.4 Chaincode functionality

Chaincode applications encode logic that is invoked by specific types of transactions on the channel. Chaincode that
defines parameters for a change of asset ownership, for example, ensures that all transactions that transfer ownership
are subject to the same rules and requirements. System chaincode is distinguished as chaincode that defines operating
parameters for the entire channel. Lifecycle and configuration system chaincode defines the rules for the channel;
endorsement and validation system chaincode defines the requirements for endorsing and validating transactions.

4.2.5 Modular design

Hyperledger Fabric implements a modular architecture to provide functional choice to network designers. Specific
algorithms for identity, ordering (consensus) and encryption, for example, can be plugged in to any Hyperledger
Fabric network. The result is a universal blockchain architecture that any industry or public domain can adopt, with
the assurance that its networks will be interoperable across market, regulatory and geographic boundaries.

4.3 Hyperledger Fabric Model

This section outlines the key design features woven into Hyperledger Fabric that fulfill its promise of a comprehensive,
yet customizable, enterprise blockchain solution:

* Assets — Asset definitions enable the exchange of almost anything with monetary value over the network, from
whole foods to antique cars to currency futures.

e Chaincode — Chaincode execution is partitioned from transaction ordering, limiting the required levels of trust
and verification across node types, and optimizing network scalability and performance.

» Ledger Features — The immutable, shared ledger encodes the entire transaction history for each channel, and
includes SQL-like query capability for efficient auditing and dispute resolution.

e Privacy — Channels and private data collections enable private and confidential multi-lateral transactions that
are usually required by competing businesses and regulated industries that exchange assets on a common net-
work.

o Security & Membership Services — Permissioned membership provides a trusted blockchain network, where
participants know that all transactions can be detected and traced by authorized regulators and auditors.

* Consensus — A unique approach to consensus enables the flexibility and scalability needed for the enterprise.

4.3. Hyperledger Fabric Model 21

hyperledger-fabricdocs Documentation, Release master

4.3.1 Assets

Assets can range from the tangible (real estate and hardware) to the intangible (contracts and intellectual property).
Hyperledger Fabric provides the ability to modify assets using chaincode transactions.

Assets are represented in Hyperledger Fabric as a collection of key-value pairs, with state changes recorded as trans-
actions on a Channel ledger. Assets can be represented in binary and/or JSON form.

You can easily define and use assets in your Hyperledger Fabric applications using the Hyperledger Composer tool.

4.3.2 Chaincode

Chaincode is software defining an asset or assets, and the transaction instructions for modifying the asset(s); in other
words, it’s the business logic. Chaincode enforces the rules for reading or altering key-value pairs or other state
database information. Chaincode functions execute against the ledger’s current state database and are initiated through
a transaction proposal. Chaincode execution results in a set of key-value writes (write set) that can be submitted to the
network and applied to the ledger on all peers.

4.3.3 Ledger Features

The ledger is the sequenced, tamper-resistant record of all state transitions in the fabric. State transitions are a result
of chaincode invocations (‘transactions’) submitted by participating parties. Each transaction results in a set of asset
key-value pairs that are committed to the ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in blocks, as well as a state
database to maintain current fabric state. There is one ledger per channel. Each peer maintains a copy of the ledger
for each channel of which they are a member.

Some features of a Fabric ledger:
* Query and update ledger using key-based lookups, range queries, and composite key queries
* Read-only queries using a rich query language (if using CouchDB as state database)
* Read-only history queries — Query ledger history for a key, enabling data provenance scenarios

* Transactions consist of the versions of keys/values that were read in chaincode (read set) and keys/values that
were written in chaincode (write set)

 Transactions contain signatures of every endorsing peer and are submitted to ordering service
* Transactions are ordered into blocks and are “delivered” from an ordering service to peers on a channel
 Peers validate transactions against endorsement policies and enforce the policies

¢ Prior to appending a block, a versioning check is performed to ensure that states for assets that were read have
not changed since chaincode execution time

* There is immutability once a transaction is validated and committed

* A channel’s ledger contains a configuration block defining policies, access control lists, and other pertinent
information

e Channels contain Membership Service Provider instances allowing for crypto materials to be derived from
different certificate authorities

See the ledger topic for a deeper dive on the databases, storage structure, and “query-ability.”

22 Chapter 4. Key Concepts

https://github.com/hyperledger/composer

hyperledger-fabricdocs Documentation, Release master

4.3.4 Privacy

Hyperledger Fabric employs an immutable ledger on a per-channel basis, as well as chaincode that can manipulate
and modify the current state of assets (i.e. update key-value pairs). A ledger exists in the scope of a channel — it can
be shared across the entire network (assuming every participant is operating on one common channel) — or it can be
privatized to include only a specific set of participants.

In the latter scenario, these participants would create a separate channel and thereby isolate/segregate their transactions
and ledger. In order to solve scenarios that want to bridge the gap between total transparency and privacy, chaincode
can be installed only on peers that need to access the asset states to perform reads and writes (in other words, if a
chaincode is not installed on a peer, it will not be able to properly interface with the ledger).

When a subset of organizations on that channel need to keep their transaction data confidential, a private data collection
(collection) is used to segregate this data in a private database, logically separate from the channel ledger, accessible
only to the authorized subset of organizations.

Thus, channels keep transactions private from the broader network whereas collections keep data private between
subsets of organizations on the channel.

To further obfuscate the data, values within chaincode can be encrypted (in part or in total) using common cryp-
tographic algorithms such as AES before sending transactions to the ordering service and appending blocks to the
ledger. Once encrypted data has been written to the ledger, it can be decrypted only by a user in possession of the
corresponding key that was used to generate the cipher text. For further details on chaincode encryption, see the
Chaincode for Developers topic.

See the Private Data topic for more details on how to achieve privacy on your blockchain network.

4.3.5 Security & Membership Services

Hyperledger Fabric underpins a transactional network where all participants have known identities. Public Key Infras-
tructure is used to generate cryptographic certificates which are tied to organizations, network components, and end
users or client applications. As a result, data access control can be manipulated and governed on the broader network
and on channel levels. This “permissioned” notion of Hyperledger Fabric, coupled with the existence and capabilities
of channels, helps address scenarios where privacy and confidentiality are paramount concerns.

See the Membership Service Providers (MSP) topic to better understand cryptographic implementations, and the sign,
verify, authenticate approach used in Hyperledger Fabric.

4.3.6 Consensus

In distributed ledger technology, consensus has recently become synonymous with a specific algorithm, within a
single function. However, consensus encompasses more than simply agreeing upon the order of transactions, and
this differentiation is highlighted in Hyperledger Fabric through its fundamental role in the entire transaction flow,
from proposal and endorsement, to ordering, validation and commitment. In a nutshell, consensus is defined as the
full-circle verification of the correctness of a set of transactions comprising a block.

Consensus is achieved ultimately when the order and results of a block’s transactions have met the explicit policy
criteria checks. These checks and balances take place during the lifecycle of a transaction, and include the usage of
endorsement policies to dictate which specific members must endorse a certain transaction class, as well as system
chaincodes to ensure that these policies are enforced and upheld. Prior to commitment, the peers will employ these
system chaincodes to make sure that enough endorsements are present, and that they were derived from the appropriate
entities. Moreover, a versioning check will take place during which the current state of the ledger is agreed or consented
upon, before any blocks containing transactions are appended to the ledger. This final check provides protection against
double spend operations and other threats that might compromise data integrity, and allows for functions to be executed
against non-static variables.

4.3. Hyperledger Fabric Model 23

hyperledger-fabricdocs Documentation, Release master

In addition to the multitude of endorsement, validity and versioning checks that take place, there are also ongoing
identity verifications happening in all directions of the transaction flow. Access control lists are implemented on
hierarchical layers of the network (ordering service down to channels), and payloads are repeatedly signed, verified and
authenticated as a transaction proposal passes through the different architectural components. To conclude, consensus
is not merely limited to the agreed upon order of a batch of transactions; rather, it is an overarching characterization
that is achieved as a byproduct of the ongoing verifications that take place during a transaction’s journey from proposal
to commitment.

Check out the Transaction Flow diagram for a visual representation of consensus.

4.4 Blockchain network

This topic will describe, at a conceptual level, how Hyperledger Fabric allows organizations to collaborate in the
formation of blockchain networks. If you’re an architect, administrator or developer, you can use this topic to get a
solid understanding of the major structure and process components in a Hyperledger Fabric blockchain network. This
topic will use a manageable worked example that introduces all of the major components in a blockchain network.
After understanding this example you can read more detailed information about these components elsewhere in the
documentation, or try building a sample network.

After reading this topic and understanding the concept of policies, you will have a solid understanding of the decisions
that organizations need to make to establish the policies that control a deployed Hyperledger Fabric network. You’ll
also understand how organizations manage network evolution using declarative policies — a key feature of Hyperledger
Fabric. In a nutshell, you’ll understand the major technical components of Hyperledger Fabric and the decisions
organizations need to make about them.

4.4.1 What is a blockchain network?

A blockchain network is a technical infrastructure that provides ledger and smart contract (chaincode) services to
applications. Primarily, smart contracts are used to generate transactions which are subsequently distributed to every
peer node in the network where they are immutably recorded on their copy of the ledger. The users of applications
might be end users using client applications or blockchain network administrators.

In most cases, multiple organizations come together as a consortium to form the network and their permissions are
determined by a set of policies that are agreed by the consortium when the network is originally configured. Moreover,
network policies can change over time subject to the agreement of the organizations in the consortium, as we’ll discover
when we discuss the concept of modification policy.

4.4.2 The sample network

Before we start, let’s show you what we’re aiming at! Here’s a diagram representing the final state of our sample
network.

Don’t worry that this might look complicated! As we go through this topic, we will build up the network piece by
piece, so that you see how the organizations R1, R2, R3 and R4 contribute infrastructure to the network to help form
it. This infrastructure implements the blockchain network, and it is governed by policies agreed by the organizations
who form the network — for example, who can add new organizations. You’ll discover how applications consume the
ledger and smart contract services provided by the blockchain network.

24 Chapter 4. Key Concepts

../build_network.html
../glossary.html#organization
../glossary.html#consortium
../glossary.html#policy

hyperledger-fabricdocs Documentation, Release master

1

e

Four organizations, R1, R2, R3 and R4 have jointly decided, and written into an agreement, that they will set up and
exploit a Hyperledger Fabric network. R4 has been assigned to be the network initiator — it has been given the power
to set up the initial version of the network. R4 has no intention to perform business transactions on the network. Rl
and R2 have a need for a private communications within the overall network, as do R2 and R3. Organization R1 has a
client application that can perform business transactions within channel C1. Organization R2 has a client application
that can do similar work both in channel C1 and C2. Organization R3 has a client application that can do this on
channel C2. Peer node Pl maintains a copy of the ledger LI associated with Cl. Peer node P2 maintains a copy of
the ledger L1 associated with C1 and a copy of ledger L2 associated with C2. Peer node P3 maintains a copy of the
ledger L2 associated with C2. The network is governed according to policy rules specified in network configuration
NC4, the network is under the control of organizations R1 and R4. Channel CI is governed according to the policy
rules specified in channel configuration CC1; the channel is under the control of organizations R1 and R2. Channel
C2 is governed according to the policy rules specified in channel configuration CC2; the channel is under the control
of organizations R2 and R3. There is an ordering service O4 that services as a network administration point for N,
and uses the system channel. The ordering service also supports application channels C1 and C2, for the purposes of
transaction ordering into blocks for distribution. Each of the four organizations has a preferred Certificate Authority.

4.4.3 Creating the Network

Let’s start at the beginning by creating the basis for the network:

4.4. Blockchain network 25

hyperledger-fabricdocs Documentation, Release master

CA4

N

The network is formed when an orderer is started. In our example network, N, the ordering service comprising a single
node, O4, is configured according to a network configuration NC4, which gives administrative rights to organization
R4. At the network level, Certificate Authority CA4 is used to dispense identities to the administrators and network
nodes of the R4 organization.

We can see that the first thing that defines a network, N, is an ordering service, O4. It’s helpful to think of the
ordering service as the initial administration point for the network. As agreed beforehand, O4 is initially configured
and started by an administrator in organization R4, and hosted in R4. The configuration NC4 contains the policies that
describe the starting set of administrative capabilities for the network. Initially this is set to only give R4 rights over
the network. This will change, as we’ll see later, but for now R4 is the only member of the network.

Certificate Authorities

You can also see a Certificate Authority, CA4, which is used to issue certificates to administrators and network nodes.
CAA4 plays a key role in our network because it dispenses X.509 certificates that can be used to identify components
as belonging to organization R4. Certificates issued by CAs can also be used to sign transactions to indicate that an
organization endorses the transaction result — a precondition of it being accepted onto the ledger. Let’s examine these
two aspects of a CA in a little more detail.

Firstly, different components of the blockchain network use certificates to identify themselves to each other as being
from a particular organization. That’s why there is usually more than one CA supporting a blockchain network — dif-
ferent organizations often use different CAs. We’re going to use four CAs in our network; one of for each organization.
Indeed, CAs are so important that Hyperledger Fabric provides you with a built-in one (called Fabric-CA) to help you
get going, though in practice, organizations will choose to use their own CA.

The mapping of certificates to member organizations is achieved by via a structure called a Membership Services
Provider (MSP). Network configuration NC4 uses a named MSP to identify the properties of certificates dispensed by
CA4 which associate certificate holders with organization R4. NC4 can then use this MSP name in policies to grant
actors from R4 particular rights over network resources. An example of such a policy is to identify the administrators
in R4 who can add new member organizations to the network. We don’t show MSPs on these diagrams, as they would
just clutter them up, but they are very important.

Secondly, we’ll see later how certificates issued by CAs are at the heart of the transaction generation and validation
process. Specifically, X.509 certificates are used in client application transaction proposals and smart contract trans-
action responses to digitally sign transactions. Subsequently the network nodes who host copies of the ledger verify
that transaction signatures are valid before accepting transactions onto the ledger.

26 Chapter 4. Key Concepts

../glossary.html#membership-services
../glossary.html#membership-services
../glossary.html#transaction
../glossary.html#proposal
../glossary.html#response
../glossary.html#response
../glossary.html#transaction

hyperledger-fabricdocs Documentation, Release master

Let’s recap the basic structure of our example blockchain network. There’s a resource, the network N, accessed by a
set of users defined by a Certificate Authority CA4, who have a set of rights over the resources in the network N as
described by policies contained inside a network configuration NC4. All of this is made real when we configure and
start the ordering service node O4.

4.4.4 Adding Network Administrators

NC4 was initially configured to only allow R4 users administrative rights over the network. In this next phase, we are
going to allow organization R1 users to administer the network. Let’s see how the network evolves:

- B

CA4

AN Y

Organization R4 updates the network configuration to make organization R1 an administrator too. After this point R1
and R4 have equal rights over the network configuration.

We see the addition of a new organization R1 as an administrator — R1 and R4 now have equal rights over the net-
work. We can also see that certificate authority CA1 has been added — it can be used to identify users from the R1
organization. After this point, users from both R1 and R4 can administer the network.

Although the orderer node, O4, is running on R4’s infrastructure, R1 has shared administrative rights over it, as long
as it can gain network access. It means that R1 or R4 could update the network configuration NC4 to allow the R2
organization a subset of network operations. In this way, even though R4 is running the ordering service, and R1 has
full administrative rights over it, R2 has limited rights to create new consortia.

In its simplest form, the ordering service is a single node in the network, and that’s what you can see in the example.
Ordering services are usually multi-node, and can be configured to have different nodes in different organizations. For
example, we might run O4 in R4 and connect it to O2, a separate orderer node in organization R1. In this way, we
would have a multi-site, multi-organization administration structure.

We’ll discuss the ordering service a little more [ater in this topic, but for now just think of the ordering service as an
administration point which provides different organizations controlled access to the network.

4.4.5 Defining a Consortium

Although the network can now be administered by R1 and R4, there is very little that can be done. The first thing we
need to do is define a consortium. This word literally means “a group with a shared destiny”, so it’s an appropriate
choice for a set of organizations in a blockchain network.

Let’s see how a consortium is defined:

4.4. Blockchain network 27

hyperledger-fabricdocs Documentation, Release master

/

BE Y

A network administrator defines a consortium X1 that contains two members, the organizations RI and R2. This
consortium definition is stored in the network configuration NC4, and will be used at the next stage of network devel-
opment. CAl and CA?2 are the respective Certificate Authorities for these organizations.

Because of the way NC4 is configured, only R1 or R4 can create new consortia. This diagram shows the addition of
a new consortium, X1, which defines R1 and R2 as its constituting organizations. We can also see that CA2 has been
added to identify users from R2. Note that a consortium can have any number of organizational members — we have
just shown two as it is the simplest configuration.

Why are consortia important? We can see that a consortium defines the set of organizations in the network who share
a need to transact with one another — in this case R1 and R2. It really makes sense to group organizations together if
they have a common goal, and that’s exactly what’s happening.

The network, although started by a single organization, is now controlled by a larger set of organizations. We could
have started it this way, with R1, R2 and R4 having shared control, but this build up makes it easier to understand.

We’re now going to use consortium X1 to create a really important part of a Hyperledger Fabric blockchain — a
channel.

4.4.6 Creating a channel for a consortium

So let’s create this key part of the Fabric blockchain network — a channel. A channel is a primary communications
mechanism by which the members of a consortium can communicate with each other. There can be multiple channels
in a network, but for now, we’ll start with one.

Let’s see how the first channel has been added to the network:

28 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

C_ c1

CA4

B8

A channel C1 has been created for RI and R2 using the consortium definition X1. The channel is governed by a
channel configuration CCI, completely separate to the network configuration. CCI is managed by R1 and R2 who
have equal rights over C1. R4 has no rights in CC1 whatsoever.

The channel C1 provides a private communications mechanism for the consortium X1. We can see channel C1 has been
connected to the ordering service O4 but that nothing else is attached to it. In the next stage of network development,
we’re going to connect components such as client applications and peer nodes. But at this point, a channel represents
the potential for future connectivity.

Even though channel C1 is a part of the network N, it is quite distinguishable from it. Also notice that organizations
R3 and R4 are not in this channel — it is for transaction processing between R1 and R2. In the previous step, we saw
how R4 could grant R1 permission to create new consortia. It’s helpful to mention that R4 also allowed R1 to create
channels! In this diagram, it could have been organization R1 or R4 who created a channel C1. Again, note that a
channel can have any number of organizations connected to it — we’ve shown two as it’s the simplest configuration.

Again, notice how channel C1 has a completely separate configuration, CC1, to the network configuration NC4. CCl1
contains the policies that govern the rights that R1 and R2 have over the channel C1 — and as we’ve seen, R3 and
R4 have no permissions in this channel. R3 and R4 can only interact with C1 if they are added by R1 or R2 to the
appropriate policy in the channel configuration CC1. An example is defining who can add a new organization to the
channel. Specifically, note that R4 cannot add itself to the channel C1 — it must, and can only, be authorized by R1 or
R2.

Why are channels so important? Channels are useful because they provide a mechanism for private communications
and private data between the members of a consortium. Channels provide privacy from other channels, and from the
network. Hyperledger Fabric is powerful in this regard, as it allows organizations to share infrastructure and keep it
private at the same time. There’s no contradiction here — different consortia within the network will have a need for
different information and processes to be appropriately shared, and channels provide an efficient mechanism to do this.
Channels provide an efficient sharing of infrastructure while maintaining data and communications privacy.

We can also see that once a channel has been created, it is in a very real sense “free from the network”. It is only
organizations that are explicitly specified in a channel configuration that have any control over it, from this time
forward into the future. Likewise, any updates to network configuration NC4 from this time onwards will have no direct
effect on channel configuration CC1; for example if consortia definition X1 is changed, it will not affect the members
of channel C1. Channels are therefore useful because they allow private communications between the organizations
constituting the channel. Moreover, the data in a channel is completely isolated from the rest of the network, including
other channels.

As an aside, there is also a special system channel defined for use by the ordering service. It behaves in exactly the

4.4. Blockchain network 29

hyperledger-fabricdocs Documentation, Release master

same way as a regular channel, which are sometimes called application channels for this reason. We don’t normally
need to worry about this channel, but we’ll discuss a little bit more about it later in this topic.

4.4.7 Peers and Ledgers

Let’s now start to use the channel to connect the blockchain network and the organizational components together. In
the next stage of network development, we can see that our network N has just acquired two new components, namely
a peer node P1 and a ledger instance, L1.

< C1

L4
B8 - Y

A peer node P1 has joined the channel C1. P1 physically hosts a copy of the ledger L1. Pl and O4 can communicate
with each other using channel C1I.

Peer nodes are the network components where copies of the blockchain ledger are hosted! At last, we’re starting to
see some recognizable blockchain components! P1’s purpose in the network is purely to host a copy of the ledger L1
for others to access. We can think of L1 as being physically hosted on P1, but logically hosted on the channel C1.
We’ll see this idea more clearly when we add more peers to the channel.

A key part of a P1’s configuration is an X.509 identity issued by CA1 which associates P1 with organization R1. Once
P1 is started, it can join channel C1 using the orderer O4. When O4 receives this join request, it uses the channel
configuration CCI to determine P1’s permissions on this channel. For example, CC1 determines whether P1 can read
and/or write information to the ledger L1.

Notice how peers are joined to channels by the organizations that own them, and though we’ve only added one peer,
we’ll see how there can be multiple peer nodes on multiple channels within the network. We’ll see the different roles
that peers can take on a little later.

4.4.8 Applications and Smart Contract chaincode

Now that the channel C1 has a ledger on it, we can start connecting client applications to consume some of the services
provided by workhorse of the ledger, the peer!

Notice how the network has grown:

30 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

— @
\
e

— Cl

CA4

8

2 AN

A smart contract S5 has been installed onto P1. Client application Al in organization Rl can use S5 to access the
ledger via peer node P1. Al, P1 and O4 are all joined to channel C1, i.e. they can all make use of the communication
facilities provided by that channel.

In the next stage of network development, we can see that client application Al can use channel CI to connect to
specific network resources — in this case Al can connect to both peer node P1 and orderer node O4. Again, see how
channels are central to the communication between network and organization components. Just like peers and orderers,
a client application will have an identity that associates it with an organization. In our example, client application Al
is associated with organization R1; and although it is outside the Fabric blockchain network, it is connected to it via
the channel C1.

It might now appear that Al can access the ledger L1 directly via P1, but in fact, all access is managed via a special
program called a smart contract chaincode, S5. Think of S5 as defining all the common access patterns to the ledger;
S5 provides a well-defined set of ways by which the ledger L1 can be queried or updated. In short, client application
Al has to go through smart contract S5 to get to ledger L1!

Smart contract chaincodes can be created by application developers in each organization to implement a business
process shared by the consortium members. Smart contracts are used to help generate transactions which can be
subsequently distributed to the every node in the network. We’ll discuss this idea a little later; it’ll be easier to
understand when the network is bigger. For now, the important thing to understand is that to get to this point two
operations must have been performed on the smart contract; it must have been installed, and then instantiated.

Installing a smart contract

After a smart contract S5 has been developed, an administrator in organization R1 must install it onto peer node
P1. This is a straightforward operation; after it has occurred, P1 has full knowledge of S5. Specifically, P1 can see
the implementation logic of S5 — the program code that it uses to access the ledger L1. We contrast this to the S5
interface which merely describes the inputs and outputs of S5, without regard to its implementation.

When an organization has multiple peers in a channel, it can choose the peers upon which it installs smart contracts; it
does not need to install a smart contract on every peer.

Instantiating a smart contract

However, just because P1 has installed S5, the other components connected to channel C1 are unaware of it; it must first
be instantiated on channel C1. In our example, which only has a single peer node P1, an administrator in organization

4.4. Blockchain network 31

../glossary.html#install
../glossary.html#instantiate

hyperledger-fabricdocs Documentation, Release master

R1 must instantiate S5 on channel C1 using P1. After instantiation, every component on channel C1 is aware of the
existence of S5; and in our example it means that S5 can now be invoked by client application A1!

Note that although every component on the channel can now access S5, they are not able to see its program logic. This
remains private to those nodes who have installed it; in our example that means P1. Conceptually this means that it’s
the smart contract interface that is instantiated, in contrast to the smart contract implementation that is installed. To
reinforce this idea; installing a smart contract shows how we think of it being physically hosted on a peer, whereas
instantiating a smart contract shows how we consider it logically hosted by the channel.

Endorsement policy

The most important piece of additional information supplied at instantiation is an endorsement policy. It describes
which organizations must approve transactions before they will be accepted by other organizations onto their copy of
the ledger. In our sample network, transactions can be only be accepted onto ledger L1 if R1 or R2 endorse them.

The act of instantiation places the endorsement policy in channel configuration CC1; it enables it to be accessed by
any member of the channel. You can read more about endorsement policies in the transaction flow topic.

Invoking a smart contract

Once a smart contract has been installed on a peer node and instantiated on a channel it can be invoked by a client
application. Client applications do this by sending transaction proposals to peers owned by the organizations specified
by the smart contract endorsement policy. The transaction proposal serves as input to the smart contract, which uses it
to generate an endorsed transaction response, which is returned by the peer node to the client application.

It’s these transactions responses that are packaged together with the transaction proposal to form a fully endorsed
transaction, which can be distributed to the entire network. We’ll look at this in more detail later For now, it’s enough
to understand how applications invoke smart contracts to generate endorsed transactions.

By this stage in network development we can see that organization R1 is fully participating in the network. Its
applications — starting with A1 — can access the ledger L1 via smart contract S5, to generate transactions that will be
endorsed by R1, and therefore accepted onto the ledger because they conform to the endorsement policy.

4.4.9 Network completed

Recall that our objective was to create a channel for consortium X1 — organizations R1 and R2. This next phase of
network development sees organization R2 add its infrastructure to the network.

Let’s see how the network has evolved:

32 Chapter 4. Key Concepts

../glossary.html#invoke
../glossary.html#endorsement-policy
../txflow.html
../glossary.html#invoke

hyperledger-fabricdocs Documentation, Release master

?? LA
.............

EE

The network has grown through the addition of infrastructure from organization R2. Specifically, R2 has added peer
node P2, which hosts a copy of ledger L1, and chaincode S5. P2 has also joined channel C1, as has application A2.
A2 and P2 are identified using certificates from CA2. All of this means that both applications Al and A2 can invoke
S5 on C1 either using peer node P1 or P2.

We can see that organization R2 has added a peer node, P2, on channel C1. P2 also hosts a copy of the ledger L1
and smart contract S5. We can see that R2 has also added client application A2 which can connect to the network via
channel C1. To achieve this, an administrator in organization R2 has created peer node P2 and joined it to channel C1,
in the same way as an administrator in R1.

We have created our first operational network! At this stage in network development, we have a channel in which
organizations R1 and R2 can fully transact with each other. Specifically, this means that applications Al and A2 can
generate transactions using smart contract S5 and ledger L1 on channel C1.

Generating and accepting transactions

In contrast to peer nodes, which always host a copy of the ledger, we see that there are two different kinds of peer
nodes; those which host smart contracts and those which do not. In our network, every peer hosts a copy of the smart
contract, but in larger networks, there will be many more peer nodes that do not host a copy of the smart contract. A
peer can only run a smart contract if it is installed on it, but it can know about the interface of a smart contract by being
connected to a channel.

You should not think of peer nodes which do not have smart contracts installed as being somehow inferior. It’s more
the case that peer nodes with smart contracts have a special power — to help generate transactions. Note that all peer
nodes can validate and subsequently accept or reject transactions onto their copy of the ledger L1. However, only
peer nodes with a smart contract installed can take part in the process of transaction endorsement which is central to
the generation of valid transactions.

We don’t need to worry about the exact details of how transactions are generated, distributed and accepted in this topic
— it is sufficient to understand that we have a blockchain network where organizations R1 and R2 can share information
and processes as ledger-captured transactions. We’ll learn a lot more about transactions, ledgers, smart contracts in
other topics.

4.4. Blockchain network 33

hyperledger-fabricdocs Documentation, Release master

Types of peers

In Hyperledger Fabric, while all peers are the same, they can assume multiple roles depending on how the network is
configured. We now have enough understanding of a typical network topology to describe these roles.

» Committing peer. Every peer node in a channel is a committing peer. It receives blocks of generated transactions,
which are subsequently validated before they are committed to the peer node’s copy of the ledger as an append
operation.

» Endorsing peer. Every peer with a smart contract can be an endorsing peer if it has a smart contract installed.
However, to actually be an endorsing peer, the smart contract on the peer must be used by a client application to
generate a digitally signed transaction response. The term endorsing peer is an explicit reference to this fact.

An endorsement policy for a smart contract identifies the organizations whose peer should digitally sign a
generated transaction before it can be accepted onto a committing peer’s copy of the ledger.

These are the two major types of peer; there are two other roles a peer can adopt:

* Leader peer. When an organization has multiple peers in a channel, a leader peer is a node which takes respon-
sibility for distributing transactions from the orderer to the other committing peers in the organization. A peer
can choose to participate in static or dynamic leadership selection.

It is helpful, therefore to think of two sets of peers from leadership perspective — those that have static leader
selection, and those with dynamic leader selection. For the static set, zero or more peers can be configured as
leaders. For the dynamic set, one peer will be elected leader by the set. Moreover, in the dynamic set, if a leader
peer fails, then the remaining peers will re-elect a leader.

It means that an organization’s peers can have one or more leaders connected to the ordering service. This can
help to improve resilience and scalability in large networks which process high volumes of transactions.

* Anchor peer. If a peer needs to communicate with a peer in another organization, then it can use one of the
anchor peers defined in the channel configuration for that organization. An organization can have zero or more
anchor peers defined for it, and an anchor peer can help with many different cross-organization communication
scenarios.

Note that a peer can be a committing peer, endorsing peer, leader peer and anchor peer all at the same time! Only the
anchor peer is optional — for all practical purposes there will always be a leader peer and at least one endorsing peer
and at least one committing peer.

Install not instantiate

In a similar way to organization R1, organization R2 must install smart contract S5 onto its peer node, P2. That’s
obvious — if applications Al or A2 wish to use S5 on peer node P2 to generate transactions, it must first be present;
installation is the mechanism by which this happens. At this point, peer node P2 has a physical copy of the smart
contract and the ledger; like P1, it can both generate and accept transactions onto its copy of ledger L1.

However, in contrast to organization R1, organization R2 does not need to instantiate smart contract S5 on channel
C1. That’s because S5 has already been instantiated on the channel by organization R1. Instantiation only needs to
happen once; any peer which subsequently joins the channel knows that smart contract S5 is available to the channel.
This fact reflects the fact that ledger L1 and smart contract really exist in a physical manner on the peer nodes, and a
logical manner on the channel; R2 is merely adding another physical instance of L1 and S5 to the network.

In our network, we can see that channel C1 connects two client applications, two peer nodes and an ordering service.
Since there is only one channel, there is only one logical ledger with which these components interact. Peer nodes P1
and P2 have identical copies of ledger L1. Copies of smart contract S5 will usually be identically implemented using
the same programming language, but if not, they must be semantically equivalent.

34 Chapter 4. Key Concepts

../glossary.html#commitment
../glossary.html#endorsement
../glossary.html#leading-peer
../glossary.html#anchor-peer

hyperledger-fabricdocs Documentation, Release master

We can see that the careful addition of peers to the network can help support increased throughput, stability, and
resilience. For example, more peers in a network will allow more applications to connect to it; and multiple peers in
an organization will provide extra resilience in the case of planned or unplanned outages.

It all means that it is possible to configure sophisticated topologies which support a variety of operational goals — there
is no theoretical limit to how big a network can get. Moreover, the technical mechanism by which peers within an
individual organization efficiently discover and communicate with each other — the gossip protocol — will accommodate
a large number of peer nodes in support of such topologies.

The careful use of network and channel policies allow even large networks to be well-governed. Organizations are free
to add peer nodes to the network so long as they conform to the policies agreed by the network. Network and channel
policies create the balance between autonomy and control which characterizes a de-centralized network.

4.4.10 Simplifying the visual vocabulary

We’re now going to simplify the visual vocabulary used to represent our sample blockchain network. As the size of
the network grows, the lines initially used to help us understand channels will become cumbersome. Imagine how
complicated our diagram would be if we added another peer or client application, or another channel?

That’s what we’re going to do in a minute, so before we do, let’s simplify the visual vocabulary. Here’s a simplified
representation of the network we’ve developed so far:

03 [b o

28 _ W

The diagram shows the facts relating to channel CI in the network N as follows: Client applications Al and A2
can use channel C1 for communication with peers P1 and P2, and orderer O4. Peer nodes Pl and P2 can use the
communication services of channel Cl. Ordering service O4 can make use of the communication services of channel
Cl. Channel configuration CCI applies to channel CI.

\
%

Note that the network diagram has been simplified by replacing channel lines with connection points, shown as blue
circles which include the channel number. No information has been lost. This representation is more scalable be-
cause it eliminates crossing lines. This allows us to more clearly represent larger networks. We’ve achieved this
simplification by focusing on the connection points between components and a channel, rather than the channel itself.

4.4.11 Adding another consortium definition

In this next phase of network development, we introduce organization R3. We’re going to give organizations R2 and
R3 a separate application channel which allows them to transact with each other. This application channel will be

4.4. Blockchain network 35

../gossip.html#gossip-protocol

hyperledger-fabricdocs Documentation, Release master

completely separate to that previously defined, so that R2 and R3 transactions can be kept private to them.

Let’s return to the network level and define a new consortium, X2, for R2 and R3:

-

CA4

o 6 NG B

A network administrator from organization RI or R4 has added a new consortium definition, X2, which includes
organizations R2 and R3. This will be used to define a new channel for X2.

Notice that the network now has two consortia defined: X1 for organizations R1 and R2 and X2 for organizations R2
and R3. Consortium X2 has been introduced in order to be able to create a new channel for R2 and R3.

A new channel can only be created by those organizations specifically identified in the network configuration policy,
NC4, as having the appropriate rights to do so, i.e. R1 or R4. This is an example of a policy which separates
organizations that can manage resources at the network level versus those who can manage resources at the channel
level. Seeing these policies at work helps us understand why Hyperledger Fabric has a sophisticated tiered policy
structure.

In practice, consortium definition X2 has been added to the network configuration NC4. We discuss the exact mechan-
ics of this operation elsewhere in the documentation.

4.4.12 Adding a new channel

Let’s now use this new consortium definition, X2, to create a new channel, C2. To help reinforce your understanding of
the simpler channel notation, we’ve used both visual styles — channel C1 is represented with blue circular end points,
whereas channel C2 is represented with red connecting lines:

36 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

O
1 1

< C2 —

AL

CA4

LB Y

A new channel C2 has been created for R2 and R3 using consortium definition X2. The channel has a channel con-
figuration CC2, completely separate to the network configuration NC4, and the channel configuration CCI. Channel
C2 is managed by R2 and R3 who have equal rights over C2 as defined by a policy in CC2. RI and R4 have no rights
defined in CC2 whatsoever.

/
E

The channel C2 provides a private communications mechanism for the consortium X2. Again, notice how organiza-
tions united in a consortium are what form channels. The channel configuration CC2 now contains the policies that
govern channel resources, assigning management rights to organizations R2 and R3 over channel C2. It is managed
exclusively by R2 and R3; R1 and R4 have no power in channel C2. For example, channel configuration CC2 can
subsequently be updated to add organizations to support network growth, but this can only be done by R2 or R3.

Note how the channel configurations CC1 and CC2 remain completely separate from each other, and completely
separate from the network configuration, NC4. Again we’re seeing the de-centralized nature of a Hyperledger Fabric
network; once channel C2 has been created, it is managed by organizations R2 and R3 independently to other network
elements. Channel policies always remain separate from each other and can only be changed by the organizations
authorized to do so in the channel.

As the network and channels evolve, so will the network and channel configurations. There is a process by which
this is accomplished in a controlled manner — involving configuration transactions which capture the change to these
configurations. Every configuration change results in a new configuration block transaction being generated, and
later in this topic, we’ll see how these blocks are validated and accepted to create updated network and channel
configurations respectively.

Network and channel configurations

Throughout our sample network, we see the importance of network and channel configurations. These configurations
are important because they encapsulate the policies agreed by the network members, which provide a shared reference
for controlling access to network resources. Network and channel configurations also contain facts about the network
and channel composition, such as the name of consortia and its organizations.

For example, when the network is first formed using the ordering service node O4, its behaviour is governed by the
network configuration NC4. The initial configuration of NC4 only contains policies that permit organization R4 to
manage network resources. NC4 is subsequently updated to also allow R1 to manage network resources. Once this
change is made, any administrator from organization R1 or R4 that connects to O4 will have network management
rights because that is what the policy in the network configuration NC4 permits. Internally, each node in the ordering
service records each channel in the network configuration, so that there is a record of each channel created, at the
network level.

4.4. Blockchain network 37

hyperledger-fabricdocs Documentation, Release master

It means that although ordering service node O4 is the actor that created consortia X1 and X2 and channels C1 and
C2, the intelligence of the network is contained in the network configuration NC4 that O4 is obeying. As long as O4
behaves as a good actor, and correctly implements the policies defined in NC4 whenever it is dealing with network
resources, our network will behave as all organizations have agreed. In many ways NC4 can be considered more
important than O4 because, ultimately, it controls network access.

The same principles apply for channel configurations with respect to peers. In our network, P1 and P2 are likewise
good actors. When peer nodes P1 and P2 are interacting with client applications Al or A2 they are each using the
policies defined within channel configuration CC1 to control access to the channel C1 resources.

For example, if A1 wants to access the smart contract chaincode S5 on peer nodes P1 or P2, each peer node uses its
copy of CC1 to determine the operations that Al can perform. For example, A1 may be permitted to read or write data
from the ledger L1 according to policies defined in CC1. We’ll see later the same pattern for actors in channel and its
channel configuration CC2. Again, we can see that while the peers and applications are critical actors in the network,
their behaviour in a channel is dictated more by the channel configuration policy than any other factor.

Finally, it is helpful to understand how network and channel configurations are physically realized. We can see that
network and channel configurations are logically singular — there is one for the network, and one for each channel.
This is important; every component that accesses the network or the channel must have a shared understanding of the
permissions granted to different organizations.

Even though there is logically a single configuration, it is actually replicated and kept consistent by every node that
forms the network or channel. For example, in our network peer nodes P1 and P2 both have a copy of channel
configuration CC1, and by the time the network is fully complete, peer nodes P2 and P3 will both have a copy of
channel configuration CC2. Similarly ordering service node O4 has a copy of the network configuration, but in a
multi-node configuration, every ordering service node will have its own copy of the network configuration.

Both network and channel configurations are kept consistent using the same blockchain technology that is used for
user transactions — but for configuration transactions. To change a network or client configuration, an administrator
must submit a configuration transaction to change the network or channel configuration. It must be signed by the
organizations identified in the appropriate policy as being responsible for configuration change. This policy is called
the mod_policy and we’ll discuss it later.

Indeed, the ordering service nodes operate a mini-blockchain, connected via the system channel we mentioned earlier.
Using the system channel ordering service nodes distribute network configuration transactions. These transactions are
used to co-operatively maintain a consistent copy of the network configuration at each ordering service node. In a
similar way, peer nodes in an application channel can distribute channel configuration transactions. Likewise, these
transactions are used to maintain a consistent copy of the channel configuration at each peer node.

This balance between objects that are logically singular, by being physically distributed is a common pattern in Hy-
perledger Fabric. Objects like network configurations, that are logically single, turn out to be physically replicated
among a set of ordering services nodes for example. We also see it with channel configurations, ledgers, and to
some extent smart contracts which are installed in multiple places but whose interfaces exist logically at the channel
level. It’s a pattern you see repeated time and again in Hyperledger Fabric, and enables Hyperledger Fabric to be both
de-centralized and yet manageable at the same time.

4.4.13 Adding another peer

Now that organization R3 is able to fully participate in channel C2, let’s add its infrastructure components to the
channel. Rather than do this one component at a time, we’re going to add a peer, its local copy of a ledger, a smart
contract and a client application all at once!

Let’s see the network with organization R3’s components added:

38 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

~

Al

-

CA4

o 2 NG

The diagram shows the facts relating to channels C1 and C2 in the network N as follows: Client applications Al and
A2 can use channel C1 for communication with peers P1 and P2, and ordering service O4; client applications A3 can
use channel C2 for communication with peer P3 and ordering service O4. Ordering service O4 can make use of the
communication services of channels Cl and C2. Channel configuration CCI1 applies to channel Cl, CC2 applies to
channel C2.

First of all, notice that because peer node P3 is connected to channel C2, it has a different ledger — L2 — to those peer
nodes using channel C1. The ledger L2 is effectively scoped to channel C2. The ledger L1 is completely separate;
it is scoped to channel C1. This makes sense — the purpose of the channel C2 is to provide private communications
between the members of the consortium X2, and the ledger L2 is the private store for their transactions.

In a similar way, the smart contract S6, installed on peer node P3, and instantiated on channel C2, is used to provide
controlled access to ledger L2. Application A3 can now use channel C2 to invoke the services provided by smart
contract S6 to generate transactions that can be accepted onto every copy of the ledger L2 in the network.

At this point in time, we have a single network that has two completely separate channels defined within it. These
channels provide independently managed facilities for organizations to transact with each other. Again, this is de-
centralization at work; we have a balance between control and autonomy. This is achieved through policies which are
applied to channels which are controlled by, and affect, different organizations.

4.4.14 Joining a peer to multiple channels

In this final stage of network development, let’s return our focus to organization R2. We can exploit the fact that R2 is
a member of both consortia X1 and X2 by joining it to multiple channels:

4.4. Blockchain network 39

hyperledger-fabricdocs Documentation, Release master

oa & ohs

CA4

—
AA - AA
& o= NG - ;

The diagram shows the facts relating to channels CI and C2 in the network N as follows: Client applications Al can
use channel CI for communication with peers P1 and P2, and ordering service O4; client application A2 can use
channel C1 for communication with peers P1 and P2 and channel C2 for communication with peers P2 and P3 and
ordering service O4; client application A3 can use channel C2 for communication with peer P3 and ordering service
O4. Ordering service O4 can make use of the communication services of channels CI1 and C2. Channel configuration
CCI applies to channel C1, CC2 applies to channel C2.

\

AL

We can see that R2 is a special organization in the network, because it is the only organization that is a member of
two application channels! It is able to transact with organization R1 on channel C1, while at the same time it can also
transact with organization R3 on a different channel, C2.

Notice how peer node P2 has smart contract S5 installed for channel C1 and smart contract S6 installed for channel
C2. Peer node P2 is a full member of both channels at the same time via different smart contracts for different ledgers.

This is a very powerful concept — channels provide both a mechanism for the separation of organizations, and a
mechanism for collaboration between organizations. All the while, this infrastructure is provided by, and shared
between, a set of independent organizations.

It is also important to note that peer node P2’s behaviour is controlled very differently depending upon the channel
in which it is transacting. Specifically, the policies contained in channel configuration CC1 dictate the operations
available to P2 when it is transacting in channel C1, whereas it is the policies in channel configuration CC2 that
control P2’s behaviour in channel C2.

Again, this is desirable — R2 and R1 agreed the rules for channel C1, whereas R2 and R3 agreed the rules for channel
C2. These rules were captured in the respective channel policies — they can and must be used by every component in
a channel to enforce correct behaviour, as agreed.

Similarly, we can see that client application A2 is now able to transact on channels C1 and C2. And likewise, it too
will be governed by the policies in the appropriate channel configurations. As an aside, note that client application
A2 and peer node P2 are using a mixed visual vocabulary — both lines and connections. You can see that they are
equivalent; they are visual synonyms.

The ordering service

The observant reader may notice that the ordering service node appears to be a centralized component; it was used to
create the network initially, and connects to every channel in the network. Even though we added R1 and R4 to the
network configuration policy NC4 which controls the orderer, the node was running on R4’s infrastructure. In a world
of de-centralization, this looks wrong!

40 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Don’t worry! Our example network showed the simplest ordering service configuration to help you understand the idea
of a network administration point. In fact, the ordering service can itself too be completely de-centralized! We men-
tioned earlier that an ordering service could be comprised of many individual nodes owned by different organizations,
so let’s see how that would be done in our sample network.

Let’s have a look at a more realistic ordering service node configuration:

CA4

AL

N

A multi-organization ordering service. The ordering service comprises ordering service nodes OI and O4. Ol is
provided by organization RI and node O4 is provided by organization R4. The network configuration NC4 defines
network resource permissions for actors from both organizations R1 and R4.

We can see that this ordering service completely de-centralized — it runs in organization R1 and it runs in organization
R4. The network configuration policy, NC4, permits R1 and R4 equal rights over network resources. Client applica-
tions and peer nodes from organizations R1 and R4 can manage network resources by connecting to either node Ol
or node O4, because both nodes behave the same way, as defined by the policies in network configuration NC4. In
practice, actors from a particular organization tend to use infrastructure provided by their home organization, but that’s
certainly not always the case.

De-centralized transaction distribution

As well as being the management point for the network, the ordering service also provides another key facility — it
is the distribution point for transactions. The ordering service is the component which gathers endorsed transactions
from applications and orders them into transaction blocks, which are subsequently distributed to every peer node in
the channel. At each of these committing peers, transactions are recorded, whether valid or invalid, and their local
copy of the ledger updated appropriately.

Notice how the ordering service node O4 performs a very different role for the channel C1 than it does for the network
N. When acting at the channel level, O4’s role is to gather transactions and distribute blocks inside channel C1. It
does this according to the policies defined in channel configuration CC1. In contrast, when acting at the network
level, O4’s role is to provide a management point for network resources according to the policies defined in network
configuration NC4. Notice again how these roles are defined by different policies within the channel and network
configurations respectively. This should reinforce to you the importance of declarative policy based configuration in
Hyperledger Fabric. Policies both define, and are used to control, the agreed behaviours by each and every member of
a consortium.

We can see that the ordering service, like the other components in Hyperledger Fabric, is a fully de-centralized com-
ponent. Whether acting as a network management point, or as a distributor of blocks in a channel, its nodes can be

4.4. Blockchain network 41

hyperledger-fabricdocs Documentation, Release master

distributed as required throughout the multiple organizations in a network.

Changing policy

Throughout our exploration of the sample network, we’ve seen the importance of the policies to control the behaviour
of the actors in the system. We’ve only discussed a few of the available policies, but there are many that can be
declaratively defined to control every aspect of behaviour. These individual policies are discussed elsewhere in the
documentation.

Most importantly of all, Hyperledger Fabric provides a uniquely powerful policy that allows network and channel
administrators to manage policy change itself! The underlying philosophy is that policy change is a constant, whether
it occurs within or between organizations, or whether it is imposed by external regulators. For example, new or-
ganizations may join a channel, or existing organizations may have their permissions increased or decreased. Let’s
investigate a little more how change policy is implemented in Hyperledger Fabric.

They key point of understanding is that policy change is managed by a policy within the policy itself. The modification
policy, or mod_policy for short, is a first class policy within a network or channel configuration that manages change.
Let’s give two brief examples of how we’ve already used mod_policy can be used to manage change in our network!

The first example was when the network was initially set up. At this time, only organization R4 was allowed to manage
the network. In practice, this was achieved by making R4 the only organization defined in the network configuration
NC4 with permissions to network resources. Moreover, the mod_policy for NC4 only mentioned organization R4 —
only R4 was allowed to change this configuration.

We then evolved the network N to also allow organization R1 to administer the network. R4 did this by adding R1 to
the policies for channel creation and consortium creation. Because of this change, R1 was able to define the consortia
X1 and X2, and create the channels C1 and C2. R1 had equal administrative rights over the channel and consortium
policies in the network configuration.

R4 however, could grant even more power over the network configuration to R1! R4 could add R1 to the mod_policy
such that R1 would be able to manage change of the network policy too.

This second power is much more powerful than the first, because now R1 now has full control over the network con-
figuration NC4! This means that R1 can, in principle remove R4’s management rights from the network. In practice,
R4 would configure the mod_policy such that R4 would need to also approve the change, or that all organizations in
the mod_policy would have to approve the change. There’s lots of flexibility to make the mod_policy as sophisticated
as it needs to be to support whatever change process is required.

This is mod_policy at work — it has allowed the graceful evolution of a basic configuration into a sophisticated one.
All the time this has occurred with the agreement of all organization involved. The mod_policy behaves like every
other policy inside a network or channel configuration; it defines a set of organizations that are allowed to change the
mod_policy itself.

We’ve only scratched the surface of the power of policies and mod_policy in particular in this subsection. It is
discussed at much more length in the policy topic, but for now let’s return to our finished network!

4.4.15 Network fully formed

Let’s recap what our network looks like using a consistent visual vocabulary. We’ve re-organized it slightly using our
more compact visual syntax, because it better accommodates larger topologies:

42 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

%00 g.0p .8

AA AA

@)\ == 468,

In this diagram we see that the Fabric blockchain network consists of two application channels and one ordering
channel. The organizations RI and R4 are responsible for the ordering channel, Rl and R2 are responsible for the
blue application channel while R2 and R3 are responsible for the red application channel. Client applications Al is
an element of organization R1, and CAl is its certificate authority. Note that peer P2 of organization R2 can use the
communication facilities of the blue and the red application channel. Each application channel has its own channel
configuration, in this case CCI and CC2. The channel configuration of the system channel is part of the network
configuration, NC4.

We’re at the end of our conceptual journey to build a sample Hyperledger Fabric blockchain network. We’ve created a
four organization network with two channels and three peer nodes, with two smart contracts and an ordering service.
It is supported by four certificate authorities. It provides ledger and smart contract services to three client applications,
who can interact with it via the two channels. Take a moment to look through the details of the network in the diagram,
and feel free to read back through the topic to reinforce your knowledge, or go to a more detailed topic.

Summary of network components

Here’s a quick summary of the network components we’ve discussed:
* Ledger. One per channel. Comprised of the Blockchain and the World state
e Smart contract (aka chaincode)
* Peer nodes
* Ordering service
* Channel

¢ Certificate Authority

4.4.16 Network summary

In this topic, we’ve seen how different organizations share their infrastructure to provide an integrated Hyperledger
Fabric blockchain network. We’ve seen how the collective infrastructure can be organized into channels that provide
private communications mechanisms that are independently managed. We’ve seen how actors such as client applica-
tions, administrators, peers and orderers are identified as being from different organizations by their use of certificates

4.4. Blockchain network 43

../glossary.html#ledger
../glossary.html#block
../glossary.html#world-state
../glossary.html#smart-contract
../glossary.html#peer
../glossary.html#ordering-service
../glossary.html#channel
../glossary.html#hyperledger-fabric-ca

hyperledger-fabricdocs Documentation, Release master

from their respective certificate authorities. And in turn, we’ve seen the importance of policy to define the agreed
permissions that these organizational actors have over network and channel resources.

4.5 Identity

4.5.1 What is an Identity?

The different actors in a blockchain network include peers, orderers, client applications, administrators and more. Each
of these actors — active elements inside or outside a network able to consume services — has a digital identity encap-
sulated in an X.509 digital certificate. These identities really matter because they determine the exact permissions
over resources and access to information that actors have in a blockchain network.

A digital identity furthermore has some additional attributes that Fabric uses to determine permissions, and it gives
the union of an identity and the associated attributes a special name — principal. Principals are just like userIDs or
grouplDs, but a little more flexible because they can include a wide range of properties of an actor’s identity, such as
the actor’s organization, organizational unit, role or even the actor’s specific identity. When we talk about principals,
they are the properties which determine their permissions.

For an identity to be verifiable, it must come from a trusted authority. A membership service provider (MSP) is
how this is achieved in Fabric. More specifically, an MSP is a component that defines the rules that govern the
valid identities for this organization. The default MSP implementation in Fabric uses X.509 certificates as identities,
adopting a traditional Public Key Infrastructure (PKI) hierarchical model (more on PKI later).

4.5.2 A Simple Scenario to Explain the Use of an Identity

Imagine that you visit a supermarket to buy some groceries. At the checkout you see a sign that says that only Visa,
Mastercard and AMEX cards are accepted. If you try to pay with a different card — let’s call it an “ImagineCard” —
it doesn’t matter whether the card is authentic and you have sufficient funds in your account. It will be not be accepted.

>

0
. Here

—o|[=@
=
e T
-=w - =m
—\
= o —>

Having a valid credit card is not enough — it must also be accepted by the store! PKIs and MSPs work together in the
same way — a PKI provides a list of identities, and an MSP says which of these are members of a given organization
that participates in the network.

PKI certificate authorities and MSPs provide a similar combination of functionalities. A PKI is like a card provider —
it dispenses many different types of verifiable identities. An MSP, on the other hand, is like the list of card providers
accepted by the store, determining which identities are the trusted members (actors) of the store payment network.
MSPs turn verifiable identities into the members of a blockchain network.

Let’s drill into these concepts in a little more detail.

44 Chapter 4. Key Concepts

../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

4.5.3 What are PKls?

A public key infrastructure (PKI) is a collection of internet technologies that provides secure communications
in a network. It’s PKI that puts the S in HTTPS — and if you’re reading this documentation on a web browser, you’re
probably using a PKI to make sure it comes from a verified source.

Certificate
Authority

!

Principal

request certificate

Certificate
. . > — public key
Revocation List issue certificate & = O'I'I'I
L]
Digital
Certificate

- |&=| [4=| [8=] |&=] |8

The elements of Public Key Infrastructure (PKI). A PKI is comprised of Certificate Authorities who issue digital
certificates to parties (e.g., users of a service, service provider), who then use them to authenticate themselves in the
messages they exchange with their environment. A CA’s Certificate Revocation List (CRL) constitutes a reference for
the certificates that are no longer valid. Revocation of a certificate can happen for a number of reasons. For example,
a certificate may be revoked because the cryptographic private material associated to the certificate has been exposed.

Although a blockchain network is more than a communications network, it relies on the PKI standard to ensure
secure communication between various network participants, and to ensure that messages posted on the blockchain are
properly authenticated. It’s therefore important to understand the basics of PKI and then why MSPs are so important.

There are four key elements to PKI:
* Digital Certificates
¢ Public and Private Keys
¢ Certificate Authorities
¢ Certificate Revocation Lists

Let’s quickly describe these PKI basics, and if you want to know more details, Wikipedia is a good place to start.

4.5.4 Digital Certificates

A digital certificate is a document which holds a set of attributes relating to the holder of the certificate. The most
common type of certificate is the one compliant with the X.509 standard, which allows the encoding of a party’s
identifying details in its structure.

For example, Mary Morris in the Manufacturing Division of Mitchell Cars in Detroit, Michigan might have
a digital certificate with a SUBJECT attribute of C=US, ST=Michigan, L=Detroit, O=Mitchell Cars,
OU=Manufacturing, CN=Mary Morris /UID=123456. Mary’s certificate is similar to her government iden-
tity card — it provides information about Mary which she can use to prove key facts about her. There are many other
attributes in an X.509 certificate, but let’s concentrate on just these for now.

4.5. Identity 45

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/X.509

hyperledger-fabricdocs Documentation, Release master

Mary Morris

A digital certificate describing a party called Mary Morris. Mary is the SUBJECT of the certificate, and the high-
lighted SUBJECT text shows key facts about Mary. The certificate also holds many more pieces of information, as you
can see. Most importantly, Mary’s public key is distributed within her certificate, whereas her private signing key is
not. This signing key must be kept private.

What is important is that all of Mary’s attributes can be recorded using a mathematical technique called cryptography
(literally, “secret writing”) so that tampering will invalidate the certificate. Cryptography allows Mary to present her
certificate to others to prove her identity so long as the other party trusts the certificate issuer, known as a Certificate
Authority (CA). As long as the CA keeps certain cryptographic information securely (meaning, its own private
signing key), anyone reading the certificate can be sure that the information about Mary has not been tampered with
— it will always have those particular attributes for Mary Morris. Think of Mary’s X.509 certificate as a digital identity
card that is impossible to change.

4.5.5 Authentication, Public keys, and Private Keys

Authentication and message integrity are important concepts in secure communications. Authentication requires that
parties who exchange messages are assured of the identity that created a specific message. For a message to have
“integrity” means that cannot have been modified during its transmission. For example, you might want to be sure
you’re communicating with the real Mary Morris rather than an impersonator. Or if Mary has sent you a message, you
might want to be sure that it hasn’t been tampered with by anyone else during transmission.

Traditional authentication mechanisms rely on digital signatures that, as the name suggests, allow a party to digitally
sign its messages. Digital signatures also provide guarantees on the integrity of the signed message.

Technically speaking, digital signature mechanisms require each party to hold two cryptographically connected keys:
a public key that is made widely available and acts as authentication anchor, and a private key that is used to produce
digital signatures on messages. Recipients of digitally signed messages can verify the origin and integrity of a
received message by checking that the attached signature is valid under the public key of the expected sender.

The unique relationship between a private key and the respective public key is the cryptographic magic that
makes secure communications possible. The unique mathematical relationship between the keys is such that the
private key can be used to produce a signature on a message that only the corresponding public key can match, and
only on the same message.

46 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Mary Morris

0-|'|'| Mary’s public key
[]

Mary's ®
orMﬁna] —
document
As I was

going to St
Ives, I met
a man with
seven cats}
each cat
had seven
kittens.

Signed version
of document

As I was
going to St
Ives, I met
a man with
seven cats;
each cat
had seven
kittens.

9

Signature

xprzaglr | OFm (X13vRZQql41)
verified as authentic
Tampered using public key
version of
document
Az I was

going to St
Ives, I met
a man with
eight cats;
each cat
had seven
kittens.

X13vRZQql41

®

Signature

(X13vRZQgL41)

incorrect according to
public key

Om

Verifying
Principal

In the example above, Mary uses her private key to sign the message. The signature can be verified by anyone who
sees the signed message using her public key.

4.5.6 Certificate Authorities

As you’ve seen, an actor or a node is able to participate in the blockchain network, via the means of a digital identity
issued for it by an authority trusted by the system. In the most common case, digital identities (or simply identities)
have the form of cryptographically validated digital certificates that comply with X.509 standard and are issued by a
Certificate Authority (CA).

CAs are a common part of internet security protocols, and you’ve probably heard of some of the more popular ones:
Symantec (originally Verisign), GeoTrust, DigiCert, GoDaddy, and Comodo, among others.

p

<

Certificate
Authority

N

)

issue signed
certificates

8=| |4

0= @

®m

A Certificate Authority dispenses certificates to different actors. These certificates are digitally signed by the CA and

4.5. ldentity

47

hyperledger-fabricdocs Documentation, Release master

bind together the actor with the actor’s public key (and optionally with a comprehensive list of properties). As a result,
if one trusts the CA (and knows its public key), it can trust that the specific actor is bound to the public key included in
the certificate, and owns the included attributes, by validating the CA’s signature on the actor’s certificate.

Certificates can be widely disseminated, as they do not include either the actors’ nor the CA’s private keys. As such
they can be used as anchor of trusts for authenticating messages coming from different actors.

CAs also have a certificate, which they make widely available. This allows the consumers of identities issued by a given
CA to verify them by checking that the certificate could only have been generated by the holder of the corresponding
private key (the CA).

In a blockchain setting, every actor who wishes to interact with the network needs an identity. In this setting, you might
say that one or more CAs can be used to define the members of an organization’s from a digital perspective. It’s
the CA that provides the basis for an organization’s actors to have a verifiable digital identity.

Root CAs, Intermediate CAs and Chains of Trust

CAs come in two flavors: Root CAs and Intermediate CAs. Because Root CAs (Symantec, Geotrust, etc) have to
securely distribute hundreds of millions of certificates to internet users, it makes sense to spread this process out
across what are called Intermediate CAs. These Intermediate CAs have their certificates issued by the root CA or
another intermediate authority, allowing the establishment of a “chain of trust” for any certificate that is issued by
any CA in the chain. This ability to track back to the Root CA not only allows the function of CAs to scale while
still providing security — allowing organizations that consume certificates to use Intermediate CAs with confidence
— it limits the exposure of the Root CA, which, if compromised, would endanger the entire chain of trust. If an
Intermediate CA is compromised, on the other hand, there will be a much smaller exposure.

RCA signs ICA1 ICAT signs ICA2 ICAZ2 signs ICA3
. certificate certificate certificate
RCA signs
own m
certificate _

o

Root Intermediate
RCA

I: |}
L=
Yellow certificates Green certificates Blue certificates Grey certificates
signed by RCA signed by ICAL signed by ICA2 signed by ICA3

A chain of trust is established between a Root CA and a set of Intermediate CAs as long as the issuing CA for the
certificate of each of these Intermediate CAs is either the Root CA itself or has a chain of trust to the Root CA.

Intermediate CAs provide a huge amount of flexibility when it comes to the issuance of certificates across multiple
organizations, and that’s very helpful in a permissioned blockchain system (like Fabric). For example, you’ll see that
different organizations may use different Root CAs, or the same Root CA with different Intermediate CAs — it really
does depend on the needs of the network.

48 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Fabric CA

It’s because CAs are so important that Fabric provides a built-in CA component to allow you to create CAs in the
blockchain networks you form. This component — known as Fabric CA is a private root CA provider capable of
managing digital identities of Fabric participants that have the form of X.509 certificates. Because Fabric CA is
a custom CA targeting the Root CA needs of Fabric, it is inherently not capable of providing SSL certificates for
general/automatic use in browsers. However, because some CA must be used to manage identity (even in a test
environment), Fabric CA can be used to provide and manage certificates. It is also possible — and fully appropriate
— to use a public/commerical root or intermediate CA to provide identification.

If you’re interested, you can read a lot more about Fabric CA in the CA documentation section.

4.5.7 Certificate Revocation Lists

A Certificate Revocation List (CRL) is easy to understand — it’s just a list of references to certificates that a CA knows
to be revoked for one reason or another. If you recall the store scenario, a CRL would be like a list of stolen credit
cards.

When a third party wants to verify another party’s identity, it first checks the issuing CA’s CRL to make sure that
the certificate has not been revoked. A verifier doesn’t have to check the CRL, but if they don’t they run the risk of
accepting a compromised identity.

Certificate Validating Impersonating
Authority Principal Principal
present
revoked
certificate

Certificate
Revocation List

!

]
]
]
7y

> |&=| |4=] 4=/ |A=] |&

Using a CRL to check that a certificate is still valid. If an impersonator tries to pass a compromised digital certificate
to a validating party, it can be first checked against the issuing CA’s CRL to make sure it’s not listed as no longer
valid.

Note that a certificate being revoked is very different from a certificate expiring. Revoked certificates have not expired
— they are, by every other measure, a fully valid certificate. For more in-depth information about CRLs, click here.

Now that you’ve seen how a PKI can provide verifiable identities through a chain of trust, the next step is to see how
these identities can be used to represent the trusted members of a blockchain network. That’s where a Membership
Service Provider (MSP) comes into play — it identifies the parties who are the members of a given organization
in the blockchain network.

To learn more about membership, check out the conceptual documentation on MSPs.
an# Membership

If you’ve read through the documentation on identity you’ve seen how a PKI can provide verifiable identities through
a chain of trust. Now let’s see how these identities can be used to represent the trusted members of a blockchain
network.

4.5. Identity 49

http://hyperledger-fabric-ca.readthedocs.io/
https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html#generating-a-crl-certificate-revocation-list
../membership/membership.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

This is where a Membership Service Provider (MSP) comes into play — it identifies which Root CAs and Inter-
mediate CAs are trusted to define the members of a trust domain, e.g., an organization, either by listing the
identities of their members, or by identifying which CAs are authorized to issue valid identities for their members, or
— as will usually be the case — through a combination of both.

The power of an MSP goes beyond simply listing who is a network participant or member of a channel. An MSP
can identify specific roles an actor might play either within the scope of the organization the MSP represents (e.g.,
admins, or as members of a sub-organization group), and sets the basis for defining access privileges in the context of
a network and channel (e.g., channel admins, readers, writers).

The configuration of an MSP is advertised to all the channels where members of the corresponding organization
participate (in the form of a channel MSP). In addition to the channel MSP, peers, orderers, and clients also maintain
a local MSP to authenticate member messages outside the context of a channel and to define the permissions over a
particular component (who has the ability to install chaincode on a peer, for example).

In addition, an MSP can allow for the identification of a list of identities that have been revoked — as discussed in the
Identity documentation — but we will talk about how that process also extends to an MSP.

We’ll talk more about local and channel MSPs in a moment. For now let’s see what MSPs do in general.

4.6 Mapping MSPs to Organizations

An organization is a managed group of members. This can be something as big as a multinational corporation or a
small as a flower shop. What’s most important about organizations (or orgs) is that they manage their members under
a single MSP. Note that this is different from the organization concept defined in an X.509 certificate, which we’ll talk
about later.

The exclusive relationship between an organization and its MSP makes it sensible to name the MSP after the organi-
zation, a convention you’ll find adopted in most policy configurations. For example, organization ORG1 would likely
have an MSP called something like ORG1-MSP. In some cases an organization may require multiple membership
groups — for example, where channels are used to perform very different business functions between organizations.
In these cases it makes sense to have multiple MSPs and name them accordingly, e.g., ORG2-MSP-NATIONAL and
ORG2-MSP-GOVERNMENT, reflecting the different membership roots of trust within ORG2 in the NATIONAL sales
channel compared to the GOVERNMENT regulatory channel.

Single set of members

ORG2.MSP.NATIONAL Members for national sales

ORG2.MSP.INTERNATIONAL Members for international sales

ORG2.MSP.GOVERNMENT Members for government sales

Two different MSP configurations for an organization. The first configuration shows the typical relationship be-
tween an MSP and an organization — a single MSP defines the list of members of an organization. In the second

50 Chapter 4. Key Concepts

../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

configuration, different MSPs are used to represent different organizational groups with national, international, and
governmental affiliation.

4.6.1 Organizational Units and MSPs

An organization is often divided up into multiple organizational units (OUs), each of which has a certain
set of responsibilities. For example, the ORG1 organization might have both ORG1-MANUFACTURING and
ORG1-DISTRIBUTION OUs to reflect these separate lines of business. When a CA issues X.509 certificates, the OU
field in the certificate specifies the line of business to which the identity belongs.

We’ll see later how OUs can be helpful to control the parts of an organization who are considered to be the members
of a blockchain network. For example, only identities from the ORG1-MANUFACTURING OU might be able to access
a channel, whereas ORG1-DISTRIBUTION cannot.

Finally, though this is a slight misuse of OUs, they can sometimes be used by different organizations in a consortium
to distinguish each other. In such cases, the different organizations use the same Root CAs and Intermediate CAs for
their chain of trust, but assign the OU field to identify members of each organization. We’ll also see how to configure
MSPs to achieve this later.

4.7 Local and Channel MSPs

MSPs appear in two places in a blockchain network: channel configuration (channel MSPs), and locally on an actor’s
premise (local MSP). Local MSPs are defined for clients (users) and for nodes (peers and orderers). Node local
MSPs define the permissions for that node (who the peer admins are, for example). The local MSPs of the users allow
the user side to authenticate itself in its transactions as a member of a channel (e.g. in chaincode transactions), or as
the owner of a specific role into the system (an org admin, for example, in configuration transactions).

Every node and user must have a local MSP defined, as it defines who has administrative or participatory rights at
that level (peer admins will not necessarily be channel admins, and vice versa).

In contrast, channel MSPs define administrative and participatory rights at the channel level. Every organization
participating in a channel must have an MSP defined for it. Peers and orderers on a channel will all share the same
view of channel MSPs, and will therefore be able to correctly authenticate the channel participants. This means that
if an organization wishes to join the channel, an MSP incorporating the chain of trust for the organization’s members
would need to be included in the channel configuration. Otherwise transactions originating from this organization’s
identities will be rejected.

The key difference here between local and channel MSPs is not how they function — both turn identities into roles —
but their scope.

4.7. Local and Channel MSPs 51

hyperledger-fabricdocs Documentation, Release master

\ORGL .MSP \ORG2 .MSP \CRG2.MSP \ORG1.M8P \ORG2.MSP
\RootCAs \RootCAs \RootChAs \RootCAs
RCAZ RCAL RCA2
\ \IntCAs \IntChs \IntCAs
' peer’s local peer’s local 7'y
Local copy of H filesystem filesystem H Local l:opv.of
5 channel policy

channel policy

- c —

*. instantiate i instantiate .

\ORG1.MSP

"""" \BootChs
--------- RCAL

\IntCAs

\ORG2 .MSP
\RootCAs
RCA2
\IntCAs

ORG1.MSP

ORG2.MSP

Global MSPs

Channel policy

Local and channel MSPs. The trust domain (e.g., the organization) of each peer is defined by the peer’s local MSP,
e.g., ORGI or ORG2. Representation of an organization on a channel is achieved by adding the organization’s MSP
to the channel configuration. For example, the channel of this figure is managed by both ORG1 and ORG2. Similar
principles apply for the network, orderers, and users, but these are not shown here for simplicity.

You may find it helpful to see how local and channel MSPs are used by seeing what happens when a blockchain
administrator installs and instantiates a smart contract, as shown in the diagram above.

An administrator B connects to the peer with an identity issued by RCA1 and stored in their local MSP. When B tries to
install a smart contract on the peer, the peer checks its local MSP, ORG1 -MSP, to verify that the identity of B is indeed
a member of ORG1. A successful verification will allow the install command to complete successfully. Subsequently,
B wishes to instantiate the smart contract on the channel. Because this is a channel operation, all organizations on the
channel must agree to it. Therefore, the peer must check the MSPs of the channel before it can successfully commit
this command. (Other things must happen too, but concentrate on the above for now.)

Local MSPs are only defined on the file system of the node or user to which they apply. Therefore, physically and
logically there is only one local MSP per node or user. However, as channel MSPs are available to all nodes in the
channel, they are logically defined once in the channel configuration. However, a channel MSP is also instantiated
on the file system of every node in the channel and kept synchronized via consensus. So while there is a copy of
each channel MSP on the local file system of every node, logically a channel MSP resides on and is maintained by the
channel or the network.

4.8 MSP Levels

The split between channel and local MSPs reflects the needs of organizations to administer their local resources, such
as a peer or orderer nodes, and their channel resources, such as ledgers, smart contracts, and consortia, which operate
at the channel or network level. It’s helpful to think of these MSPs as being at different levels, with MSPs at a
higher level relating to network administration concerns while MSPs at a lower level handle identity for the
administration of private resources. MSPs are mandatory at every level of administration — they must be defined
for the network, channel, peer, orderer, and users.

52 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

(== N\

i1
|

Blockchain Network

\ |
\ /

\ Global MSP " N/

Certificate Authority

Local MSP @ Channel
@ Membership
Services Provider
RCA2 ORGZ.MSP [SEIE - C — 4 b
= eer

ORG1.MSP ch n

Global MSPs \ S
- Orderer

MSP Levels. The MSPs for the peer and orderer are local, whereas the MSPs for a channel (including the network
configuration channel) are shared across all participants of that channel. In this figure, the network configuration
channel is administered by ORG1, but another application channel can be managed by ORGI and ORG2. The peer
is a member of and managed by ORG2, whereas ORGI manages the orderer of the figure. ORGI trusts identities
from RCAI, whereas ORG?2 trusts identities from RCA2. Note that these are administration identities, reflecting who
can administer these components. So while ORGI administers the network, ORG2.MSP does exist in the network
definition.

* Network MSP: The configuration of a network defines who are the members in the network — by defining
the MSPs of the participant organizations — as well as which of these members are authorized to perform
administrative tasks (e.g., creating a channel).

¢ Channel MSP: It is important for a channel to maintain the MSPs of its members separately. A channel provides
private communications between a particular set of organizations which in turn have administrative control over
it. Channel policies interpreted in the context of that channel’s MSPs define who has ability to participate in
certain action on the channel, e.g., adding organizations, or instantiating chaincodes. Note that there is no
necessary relationship between the permission to administrate a channel and the ability to administrate the
network configuration channel (or any other channel). Administrative rights exist within the scope of what is
being administrated (unless the rules have been written otherwise — see the discussion of the ROLE attribute
below).

¢ Peer MSP: This local MSP is defined on the file system of each peer and there is a single MSP instance for
each peer. Conceptually, it performs exactly the same function as channel MSPs with the restriction that it only
applies to the peer where it is defined. An example of an action whose authorization is evaluated using the peer’s
local MSP is the installation of a chaincode on the peer.

* Orderer MSP: Like a peer MSP, an orderer local MSP is also defined on the file system of the node and only
applies to that node. Like peer nodes, orderers are also owned by a single organization and therefore have a
single MSP to list the actors or nodes it trusts.

4.9 MSP Structure

So far, you’ve seen that the most important element of an MSP are the specification of the root or intermediate CAs
that are used to establish an actor’s or node’s membership in the respective organization. There are, however, more
elements that are used in conjunction with these two to assist with membership functions.

4.9. MSP Structure 53

hyperledger-fabricdocs Documentation, Release master

BEA A

=)

o=/ || Oom [R‘li]

Root CAs Organizational Revoked Keystore TLS
Units Certificates (private Intermediate
Intermediate - Signing keys) TLS CAs
CAs Administrators Certificates Root CAs

The figure above shows how a local MSP is stored on a local filesystem. Even though channel MSPs are not physically
structured in exactly this way, it’s still a helpful way to think about them.

As you can see, there are nine elements to an MSP. It’s easiest to think of these elements in a directory structure, where
the MSP name is the root folder name with each subfolder representing different elements of an MSP configuration.

Let’s describe these folders in a little more detail and see why they are important.

* Root CAs: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by the organiza-
tion represented by this MSP. There must be at least one Root CA X.509 certificate in this MSP folder.

This is the most important folder because it identifies the CAs from which all other certificates must be derived
to be considered members of the corresponding organization.

* Intermediate CAs: This folder contains a list of X.509 certificates of the Intermediate CAs trusted by this
organization. Each certificate must be signed by one of the Root CAs in the MSP or by an Intermediate CA
whose issuing CA chain ultimately leads back to a trusted Root CA.

An intermediate CA may represent a different subdivision of the organization (like ORG1-MANUFACTURING
and ORG1-DISTRIBUTION do for ORG1), or the organization itself (as may be the case if a commercial CA
is leveraged for the organization’s identity management). In the latter case intermediate CAs can be used to rep-
resent organization subdivisions. Here you may find more information on best practices for MSP configuration.
Notice, that it is possible to have a functioning network that does not have an Intermediate CA, in which case
this folder would be empty.

Like the Root CA folder, this folder defines the CAs from which certificates must be issued to be considered
members of the organization.

* Organizational Units (OUs): These are listed in the SFABRIC_CFG_PATH/msp/config.yaml file and
contain a list of organizational units, whose members are considered to be part of the organization represented
by this MSP. This is particularly useful when you want to restrict the members of an organization to the ones
holding an identity (signed by one of MSP designated CAs) with a specific OU in it.

Specifying OUs is optional. If no OUs are listed, all the identities that are part of an MSP — as identified by the
Root CA and Intermediate CA folders — will be considered members of the organization.

¢ Administrators: This folder contains a list of identities that define the actors who have the role of administrators
for this organization. For the standard MSP type, there should be one or more X.509 certificates in this list.

It’s worth noting that just because an actor has the role of an administrator it doesn’t mean that they can ad-
minister particular resources! The actual power a given identity has with respect to administering the system
is determined by the policies that manage system resources. For example, a channel policy might specify that

54 Chapter 4. Key Concepts

../msp.html

hyperledger-fabricdocs Documentation, Release master

ORG1-MANUFACTURING administrators have the rights to add new organizations to the channel, whereas the
ORG1-DISTRIBUTION administrators have no such rights.

Even though an X.509 certificate has a ROLE attribute (specifying, for example, that an actor is an admin),
this refers to an actor’s role within its organization rather than on the blockchain network. This is similar to the
purpose of the OU attribute, which — if it has been defined — refers to an actor’s place in the organization.

The ROLE attribute can be used to confer administrative rights at the channel level if the policy for that channel
has been written to allow any administrator from an organization (or certain organizations) permission to per-
form certain channel functions (such as instantiating chaincode). In this way, an organizational role can confer
a network role.

* Revoked Certificates: If the identity of an actor has been revoked, identifying information about the identity
— not the identity itself — is held in this folder. For X.509-based identities, these identifiers are pairs of strings
known as Subject Key Identifier (SKI) and Authority Access Identifier (AKI), and are checked whenever the
X.509 certificate is being used to make sure the certificate has not been revoked.

This list is conceptually the same as a CA’s Certificate Revocation List (CRL), but it also relates to revocation
of membership from the organization. As a result, the administrator of an MSP, local or channel, can quickly
revoke an actor or node from an organization by advertising the updated CRL of the CA the revoked certificate
as issued by. This “list of lists” is optional. It will only become populated as certificates are revoked.

* Node Identity: This folder contains the identity of the node, i.e., cryptographic material that — in combination
to the content of Key St ore — would allow the node to authenticate itself in the messages that is sends to other
participants of its channels and network. For X.509 based identities, this folder contains an X.509 certificate.
This is the certificate a peer places in a transaction proposal response, for example, to indicate that the peer
has endorsed it — which can subsequently be checked against the resulting transaction’s endorsement policy at
validation time.

This folder is mandatory for local MSPs, and there must be exactly one X.509 certificate for the node. It is not
used for channel MSPs.

¢ KeyStore for Private Key: This folder is defined for the local MSP of a peer or orderer node (or in an
client’s local MSP), and contains the node’s signing key. This key matches cryptographically the node’s identity
included in Node Identity folder and is used to sign data — for example to sign a transaction proposal response,
as part of the endorsement phase.

This folder is mandatory for local MSPs, and must contain exactly one private key. Obviously, access to this
folder must be limited only to the identities of users who have administrative responsibility on the peer.

Configuration of a channel MSPs does not include this folder, as channel MSPs solely aim to offer identity
validation functionalities and not signing abilities.

* TLS Root CA: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by this
organization for TLS communications. An example of a TLS communication would be when a peer needs to
connect to an orderer so that it can receive ledger updates.

MSP TLS information relates to the nodes inside the network — the peers and the orderers, in other words,
rather than the applications and administrations that consume the network.

There must be at least one TLS Root CA X.509 certificate in this folder.

* TLS Intermediate CA: This folder contains a list intermediate CA certificates CAs trusted by the organization
represented by this MSP for TLS communications. This folder is specifically useful when commercial CAs are
used for TLS certificates of an organization. Similar to membership intermediate CAs, specifying intermediate
TLS CAs is optional.

For more information about TLS, click here.

If you’ve read this doc as well as our doc on Identity), you should have a pretty good grasp of how identities and mem-
bership work in Hyperledger Fabric. You’ve seen how a PKI and MSPs are used to identify the actors collaborating in

4.9. MSP Structure 55

../enable_tls.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

a blockchain network. You’ve learned how certificates, public/private keys, and roots of trust work, in addition to how
MSPs are physically and logically structured.

4.10 Peers

A blockchain network is comprised primarily of a set of peer nodes (or, simply, peers). Peers are a fundamental
element of the network because they host ledgers and smart contracts. Recall that a ledger immutably records all
the transactions generated by smart contracts (or chaincode). Smart contracts and ledgers are used to encapsulate the
shared processes and shared information in a network, respectively. These aspects of a peer make them a good starting
point to understand a Hyperledger Fabric network.

Other elements of the blockchain network are of course important: ledgers and smart contracts, orderers, policies,
channels, applications, organizations, identities, and membership, and you can read more about them in their own
dedicated sections. This section focusses on peers, and their relationship to those other elements in a Hyperledger
Fabric network.

@ D

Blockchain
network

Peer node

Smart contract
(aka chaincode)

L1

P3

Ledger

1080

N v

A blockchain network is comprised of peer nodes, each of which can hold copies of ledgers and copies of smart
contracts. In this example, the network N consists of peers P1, P2 and P3, each of which maintain their own instance
of the distributed ledger L1. P1, P2 and P3 use the same chaincode, S1, to access their copy of that distributed ledger.

Peers can be created, started, stopped, reconfigured, and even deleted. They expose a set of APIs that enable admin-
istrators and applications to interact with the services that they provide. We’ll learn more about these services in this
section.

4.10.1 A word on terminology
Hyperledger Fabric implements smart contracts with a technology concept it calls chaincode — simply a piece of

code that accesses the ledger, written in one of the supported programming languages. In this topic, we’ll usually use
the term chaincode, but feel free to read it as smart contract if you’re more used to that term. It’s the same thing!

4.10.2 Ledgers and Chaincode

Let’s look at a peer in a little more detail. We can see that it’s the peer that hosts both the ledger and chaincode.
More accurately, the peer actually hosts instances of the ledger, and instances of chaincode. Note that this provides a

56 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

deliberate redundancy in a Fabric network — it avoids single points of failure. We’ll learn more about the distributed
and decentralized nature of a blockchain network later in this section.

A peer hosts instances of ledgers and instances of chaincodes. In this example, Pl hosts an instance of ledger L1 and
an instance of chaincode S1. There can be many ledgers and chaincodes hosted on an individual peer.

Because a peer is a host for ledgers and chaincodes, applications and administrators must interact with a peer if they
want to access these resources. That’s why peers are considered the most fundamental building blocks of a Hyperledger
Fabric network. When a peer is first created, it has neither ledgers nor chaincodes. We’ll see later how ledgers get
created, and how chaincodes get installed, on peers.

Multiple Ledgers

A peer is able to host more than one ledger, which is helpful because it allows for a flexible system design. The
simplest configuration is for a peer to manage a single ledger, but it’s absolutely appropriate for a peer to host two or
more ledgers when required.

S2

A peer hosting multiple ledgers. Peers host one or more ledgers, and each ledger has zero or more chaincodes that

4.10. Peers 57

hyperledger-fabricdocs Documentation, Release master

apply to them. In this example, we can see that the peer PI hosts ledgers L1 and L2. Ledger LI is accessed using
chaincode S1. Ledger L2 on the other hand can be accessed using chaincodes S1 and S2.

Although it is perfectly possible for a peer to host a ledger instance without hosting any chaincodes which access that
ledger, it’s rare that peers are configured this way. The vast majority of peers will have at least one chaincode installed
on it which can query or update the peer’s ledger instances. It’s worth mentioning in passing that, whether or not users
have installed chaincodes for use by external applications, peers also have special system chaincodes that are always
present. These are not discussed in detail in this topic.

Multiple Chaincodes

There isn’t a fixed relationship between the number of ledgers a peer has and the number of chaincodes that can access
that ledger. A peer might have many chaincodes and many ledgers available to it.

S1 S3

An example of a peer hosting multiple chaincodes. Each ledger can have many chaincodes which access it. In this
example, we can see that peer P1 hosts ledgers L1 and L2, where Ll is accessed by chaincodes S1 and S2, and L2 is
accessed by S1 and S3. We can see that S1 can access both L1 and L2.

We’ll see a little later why the concept of channels in Hyperledger Fabric is important when hosting multiple ledgers
or multiple chaincodes on a peer.

4.10.3 Applications and Peers

We’re now going to show how applications interact with peers to access the ledger. Ledger-query interactions involve
a simple three-step dialogue between an application and a peer; ledger-update interactions are a little more involved,
and require two extra steps. We’ve simplified these steps a little to help you get started with Hyperledger Fabric, but
don’t worry — what’s most important to understand is the difference in application-peer interactions for ledger-query
compared to ledger-update transaction styles.

Applications always connect to peers when they need to access ledgers and chaincodes. The Hyperledger Fabric
Software Development Kit (SDK) makes this easy for programmers — its APIs enable applications to connect to peers,
invoke chaincodes to generate transactions, submit transactions to the network that will get ordered and committed to
the distributed ledger, and receive events when this process is complete.

Through a peer connection, applications can execute chaincodes to query or update a ledger. The result of a ledger
query transaction is returned immediately, whereas ledger updates involve a more complex interaction between appli-
cations, peers and orderers. Let’s investigate this in a little more detail.

58 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Blockehain
Network
/ 2.1 peer invokes chaincode with proposal \
E] Application
1. connect to peer
2. invoke chaincode (proposal) 2.2 chaincode generates Peer
A query or update
3. proposal response proposal response
| %
H 5. ledger update event Chaincode
| Leeeo | 4.2 peer updates ledger
i using transaction blocks
4. request that transaction is ordered :4 1 Transactions sent - Ledger
to peers in blocks y
. Orderer

Peers, in conjunction with orderers, ensure that the ledger is kept up-to-date on every peer. In this example, application
A connects to P1 and invokes chaincode S1 to query or update the ledger L1. PI invokes S1 to generate a proposal
response that contains a query result or a proposed ledger update. Application A receives the proposal response and,
for queries, the process is now complete. For updates, A builds a transaction from all of the responses, which it sends
it to O1 for ordering. Ol collects transactions from across the network into blocks, and distributes these to all peers,
including P1. PI validates the transaction before applying to L1. Once LI is updated, P1 generates an event, received
by A, to signify completion.

A peer can return the results of a query to an application immediately since all of the information required to satisfy the
query is in the peer’s local copy of the ledger. Peers never consult with other peers in order to respond to a query from
an application. Applications can, however, connect to one or more peers to issue a query; for example, to corroborate
a result between multiple peers, or retrieve a more up-to-date result from a different peer if there’s a suspicion that
information might be out of date. In the diagram, you can see that ledger query is a simple three-step process.

An update transaction starts in the same way as a query transaction, but has two extra steps. Although ledger-updating
applications also connect to peers to invoke a chaincode, unlike with ledger-querying applications, an individual peer
cannot perform a ledger update at this time, because other peers must first agree to the change — a process called
consensus. Therefore, peers return to the application a proposed update — one that this peer would apply subject to
other peers’ prior agreement. The first extra step — step four — requires that applications send an appropriate set of
matching proposed updates to the entire network of peers as a transaction for commitment to their respective ledgers.
This is achieved by the application using an orderer to package transactions into blocks, and distribute them to the
entire network of peers, where they can be verified before being applied to each peer’s local copy of the ledger. As
this whole ordering processing takes some time to complete (seconds), the application is notified asynchronously, as
shown in step five.

Later in this section, you’ll learn more about the detailed nature of this ordering process — and for a really detailed
look at this process see the Transaction Flow topic.

4.10.4 Peers and Channels

Although this section is about peers rather than channels, it’s worth spending a little time understanding how peers
interact with each other, and with applications, via channels — a mechanism by which a set of components within a
blockchain network can communicate and transact privately.

These components are typically peer nodes, orderer nodes and applications and, by joining a channel, they agree to
collaborate to collectively share and manage identical copies of the ledger associated with that channel. Conceptually,
you can think of channels as being similar to groups of friends (though the members of a channel certainly don’t need

4.10. Peers 59

../txflow.html

hyperledger-fabricdocs Documentation, Release master

to be friends!). A person might have several groups of friends, with each group having activities they do together.
These groups might be totally separate (a group of work friends as compared to a group of hobby friends), or there
can be some crossover between them. Nevertheless, each group is its own entity, with “rules” of a kind.

Blockchain
/ \ @ Blockch: - Ledger
P1 @ Channel Application
L1
P2 PA Principal PA (e.g. A, P1)
|.1 n Peer ? communicates via
channel C.
p— C i
k y E] Chaincode

Channels allow a specific set of peers and applications to communicate with each other within a blockchain network.
In this example, application A can communicate directly with peers P1 and P2 using channel C. You can think of the
channel as a pathway for communications between particular applications and peers. (For simplicity, orderers are
not shown in this diagram, but must be present in a functioning network.)

We see that channels don’t exist in the same way that peers do — it’s more appropriate to think of a channel as a
logical structure that is formed by a collection of physical peers. It is vital to understand this point — peers provide
the control point for access to, and management of, channels.

4.10.5 Peers and Organizations

Now that you understand peers and their relationship to ledgers, chaincodes and channels, you’ll be able to see how
multiple organizations come together to form a blockchain network.

Blockchain networks are administered by a collection of organizations rather than a single organization. Peers are
central to how this kind of distributed network is built because they are owned by — and are the connection points to

the network for — these organizations.

Blockchain
Ledger
Network
-~ .
Channel E] Application
/
/
]
i
! Principal PA (e.g. A1, P5)
i Peer ?’ communicates via
! channel C.
1
\
A
\
\
A Organization

) Organization R owns application Al
/| and peers P1, P2.

60 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Peers in a blockchain network with multiple organizations. The blockchain network is built up from the peers owned
and contributed by the different organizations. In this example, we see four organizations contributing eight peers to
form a network. The channel C connects five of these peers in the network N — P1, P3, P5, P7 and P8. The other
peers owned by these organizations have not been joined to this channel, but are typically joined to at least one other
channel. Applications that have been developed by a particular organization will connect to their own organization’s
peers as well as those of different organizations. Again, for simplicity, an orderer node is not shown in this diagram.

It’s really important that you can see what’s happening in the formation of a blockchain network. The network is
both formed and managed by the multiple organizations who contribute resources to it. Peers are the resources that
we’re discussing in this topic, but the resources an organization provides are more than just peers. There’s a principle
at work here — the network literally does not exist without organizations contributing their individual resources
to the collective network. Moreover, the network grows and shrinks with the resources that are provided by these
collaborating organizations.

You can see that (other than the ordering service) there are no centralized resources — in the example above, the
network, N, would not exist if the organizations did not contribute their peers. This reflects the fact that the network
does not exist in any meaningful sense unless and until organizations contribute the resources that form it. Moreover,
the network does not depend on any individual organization — it will continue to exist as long as one organization
remains, no matter which other organizations may come and go. This is at the heart of what it means for a network to
be decentralized.

Applications in different organizations, as in the example above, may or may not be the same. That’s because it’s
entirely up to an organization as to how its applications process their peers’ copies of the ledger. This means that both
application and presentation logic may vary from organization to organization even though their respective peers host
exactly the same ledger data.

Applications connect either to peers in their organization, or peers in another organization, depending on the nature of
the ledger interaction that’s required. For ledger-query interactions, applications typically connect to their own orga-
nization’s peers. For ledger-update interactions, we’ll see later why applications need to connect to peers representing
every organization that is required to endorse the ledger update.

4.10.6 Peers and ldentity

Now that you’ve seen how peers from different organizations come together to form a blockchain network, it’s worth
spending a few moments understanding how peers get assigned to organizations by their administrators.

Peers have an identity assigned to them via a digital certificate from a particular certificate authority. You can read
lots more about how X.509 digital certificates work elsewhere in this guide but, for now, think of a digital certificate
as being like an ID card that provides lots of verifiable information about a peer. Each and every peer in the network
is assigned a digital certificate by an administrator from its owning organization.

4.10. Peers 61

hyperledger-fabricdocs Documentation, Release master

Blockchain Peer
Network
® Channel Organization
Identity Principal PA (e.g. P1,P4)
T communicates via
Channel channel C.
CP policy
Certificate @ Membership Service
Authority Provider
~— i S) 2 N - N
H ,’ \ | Organization R owns application Al
MSPs CP@ N J | and peers P1, P2.
CA1 ORG1.MSP N, JR4
\~~__—’f
ORG2.MSP { CA2

0

Channel
N T Cha-nnel C cp@ polICYCP
subject to contains

cp MSsP2

policy CP. MSPs: MSP1
and MSP2.

0)

MSP1 selects the Certificate
Authority CA1 to provide certificates
for it.

Principal P
has identity D

a

When a peer connects to a channel, its digital certificate identifies its owning organization via a channel MSP. In this
example, P1 and P2 have identities issued by CAl. Channel C determines from a policy in its channel configuration
that identities from CAl should be associated with Orgl using ORGI1.MSP. Similarly, P3 and P4 are identified by
ORG2.MSP as being part of Org2.

Whenever a peer connects using a channel to a blockchain network, a policy in the channel configuration uses the
peer’s identity to determine its rights. The mapping of identity to organization is provided by a component called
a Membership Service Provider (MSP) — it determines how a peer gets assigned to a specific role in a particular
organization and accordingly gains appropriate access to blockchain resources. Moreover, a peer can be owned only
by a single organization, and is therefore associated with a single MSP. We’ll learn more about peer access control
later in this section, and there’s an entire section on MSPs and access control policies elsewhere in this guide. But
for now, think of an MSP as providing linkage between an individual identity and a particular organizational role in a
blockchain network.

To digress for a moment, peers as well as everything that interacts with a blockchain network acquire their organi-
zational identity from their digital certificate and an MSP. Peers, applications, end users, administrators and orderers
must have an identity and an associated MSP if they want to interact with a blockchain network. We give a name
to every entity that interacts with a blockchain network using an identity — a principal. You can learn lots more
about principals and organizations elsewhere in this guide, but for now you know more than enough to continue your
understanding of peers!

Finally, note that it’s not really important where the peer is physically located — it could reside in the cloud, or in a
data centre owned by one of the organizations, or on a local machine — it’s the identity associated with it that identifies
it as being owned by a particular organization. In our example above, P3 could be hosted in Orgl’s data center, but as
long as the digital certificate associated with it is issued by CA2, then it’s owned by Org?2.

4.10.7 Peers and Orderers

We’ve seen that peers form the basis for a blockchain network, hosting ledgers and chaincode which can be queried
and updated by peer-connected applications. However, the mechanism by which applications and peers interact with

62 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

each other to ensure that every peer’s ledger is kept consistent is mediated by special nodes called orderers, and it’s to
these nodes we now turn our attention.

An update transaction is quite different from a query transaction because a single peer cannot, on its own, update the
ledger — updating requires the consent of other peers in the network. A peer requires other peers in the network to
approve a ledger update before it can be applied to a peer’s local ledger. This process is called consensus, which takes
much longer to complete than a simple query. But when all the peers required to approve the transaction do so, and the
transaction is committed to the ledger, peers will notify their connected applications that the ledger has been updated.
You’re about to be shown a lot more detail about how peers and orderers manage the consensus process in this section.

Specifically, applications that want to update the ledger are involved in a 3-phase process, which ensures that all the
peers in a blockchain network keep their ledgers consistent with each other. In the first phase, applications work with
a subset of endorsing peers, each of which provide an endorsement of the proposed ledger update to the application,
but do not apply the proposed update to their copy of the ledger. In the second phase, these separate endorsements
are collected together as transactions and packaged into blocks. In the final phase, these blocks are distributed back to
every peer where each transaction is validated before being applied to that peer’s copy of the ledger.

As you will see, orderer nodes are central to this process, so let’s investigate in a little more detail how applications
and peers use orderers to generate ledger updates that can be consistently applied to a distributed, replicated ledger.

Phase 1: Proposal

Phase 1 of the transaction workflow involves an interaction between an application and a set of peers — it does not
involve orderers. Phase 1 is only concerned with an application asking different organizations’ endorsing peers to
agree to the results of the proposed chaincode invocation.

To start phase 1, applications generate a transaction proposal which they send to each of the required set of peers for
endorsement. Each of these endorsing peers then independently executes a chaincode using the transaction proposal
to generate a transaction proposal response. It does not apply this update to the ledger, but rather simply signs it and
returns it to the application. Once the application has received a sufficient number of signed proposal responses, the
first phase of the transaction flow is complete. Let’s examine this phase in a little more detail.

Blockchain Chaincode
Network

Channel

Peer , Ledger

Orderer

Transaction T1,
EEl P Z)l | response R2
endorsed with E2

Transaction T
proposal P

ACIRE

T Y
c) Ledger

N | transaction PrincipaI-PA (Pl,!’Z)
tEl__ | T1 flowson Y communicates via

channel C channel C.

Transaction proposals are independently executed by peers who return endorsed proposal responses. In this example,
application Al generates transaction T1 proposal P which it sends to both peer Pl and peer P2 on channel C. Pl
executes S1 using transaction T1 proposal P generating transaction T1 response RI which it endorses with EI. Inde-
pendently, P2 executes S1 using transaction T1 proposal P generating transaction T1 response R2 which it endorses
with E2. Application Al receives two endorsed responses for transaction T1, namely EI and E2.

Initially, a set of peers are chosen by the application to generate a set of proposed ledger updates. Which peers are
chosen by the application? Well, that depends on the endorsement policy (defined for a chaincode), which defines the
set of organizations that need to endorse a proposed ledger change before it can be accepted by the network. This

4.10. Peers 63

hyperledger-fabricdocs Documentation, Release master

is literally what it means to achieve consensus — every organization who matters must have endorsed the proposed
ledger change before it will be accepted onto any peer’s ledger.

A peer endorses a proposal response by adding its digital signature, and signing the entire payload using its private
key. This endorsement can be subsequently used to prove that this organization’s peer generated a particular response.
In our example, if peer P1 is owned by organization Orgl, endorsement E1 corresponds to a digital proof that “Trans-
action T1 response R1 on ledger L1 has been provided by Orgl’s peer P1!”.

Phase 1 ends when the application receives signed proposal responses from sufficient peers. We note that different
peers can return different and therefore inconsistent transaction responses to the application for the same transaction
proposal. It might simply be that the result was generated at different times on different peers with ledgers at different
states, in which case an application can simply request a more up-to-date proposal response. Less likely, but much
more seriously, results might be different because the chaincode is non-deterministic. Non-determinism is the enemy
of chaincodes and ledgers and if it occurs it indicates a serious problem with the proposed transaction, as inconsis-
tent results cannot, obviously, be applied to ledgers. An individual peer cannot know that their transaction result is
non-deterministic — transaction responses must be gathered together for comparison before non-determinism can be
detected. (Strictly speaking, even this is not enough, but we defer this discussion to the transaction section, where
non-determinism is discussed in detail.)

At the end of phase 1, the application is free to discard inconsistent transaction responses if it wishes to do so,
effectively terminating the transaction workflow early. We’ll see later that if an application tries to use an inconsistent
set of transaction responses to update the ledger, it will be rejected.

Phase 2: Packaging
The second phase of the transaction workflow is the packaging phase. The orderer is pivotal to this process —
it receives transactions containing endorsed transaction proposal responses from many applications. It orders each

transaction relative to other transactions, and packages batches of transactions into blocks ready for distribution back
to all peers connected to the orderer, including the original endorsing peers.

Blockchain P

Network eer

. N\
e T Block B1 . ord
oc| rderer
T6 15
E}*
Transaction T1,
A2 T1 (s [ES response R2a @ Channel
T2 R2 E1 endorsed with E2
B | | e
Il
A.. i

Block B1 contains

transactions
1,72, T3..
e
S — Ledger Principal PA
\ y transaction T1 (P1,P2)
flows on channel ? communicates

= i
S
=I

C via channel C.

The first role of an orderer node is to package proposed ledger updates. In this example, application Al sends a
transaction T1 endorsed by E1 and E2 to the orderer Ol. In parallel, Application A2 sends transaction T2 endorsed
by EI to the orderer Ol. Ol packages transaction Tl from application Al and transaction T2 from application
A2 together with other transactions from other applications in the network into block B2. We can see that in B2, the
transaction order is T1,T2,T3,T4,T6,T5 — which may not be the order in which these transactions arrived at the orderer
node! (This example shows a very simplified orderer configuration.)

An orderer receives proposed ledger updates concurrently from many different applications in the network on a partic-
ular channel. Its job is to arrange these proposed updates into a well-defined sequence, and package them into blocks

64 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

for subsequent distribution. These blocks will become the blocks of the blockchain! Once an orderer has generated a
block of the desired size, or after a maximum elapsed time, it will be sent to all peers connected to it on a particular
channel. We’ll see how this block is processed in phase 3.

It’s worth noting that the sequencing of transactions in a block is not necessarily the same as the order of arrival of
transactions at the orderer! Transactions can be packaged in any order into a block, and it’s this sequence that becomes
the order of execution. What’s important is that there is a strict order, rather than what that order is.

This strict ordering of transactions within blocks makes Hyperledger Fabric a little different from other blockchains
where the same transaction can be packaged into multiple different blocks. In Hyperledger Fabric, this cannot happen
— the blocks generated by a collection of orderers are said to be final because once a transaction has been written to a
block, its position in the ledger is immutably assured. Hyperledger Fabric’s finality means that a disastrous occurrence
known as a ledger fork cannot occur. Once transactions are captured in a block, history cannot be rewritten for that
transaction at a future point in time.

We can see also see that, whereas peers host the ledger and chaincodes, orderers most definitely do not. Every
transaction that arrives at an orderer is mechanically packaged in a block — the orderer makes no judgement as to the
value of a transaction, it simply packages it. That’s an important property of Hyperledger Fabric — all transactions
are marshalled into a strict order — transactions are never dropped or de-prioritized.

At the end of phase 2, we see that orderers have been responsible for the simple but vital processes of collecting
proposed transaction updates, ordering them, packaging them into blocks, ready for distribution.

Phase 3: Validation
The final phase of the transaction workflow involves the distribution and subsequent validation of blocks from the
orderer to the peers, where they can be applied to the ledger. Specifically, at each peer, every transaction within a

block is validated to ensure that it has been consistently endorsed by all relevant organizations before it is applied to
the ledger. Failed transactions are retained for audit, but are not applied to the ledger.

Blockchain peer
Network
@ Channel

Ledger - Block B
1 T

T2

T3

Orderer

Ledger L1 has Block B1 contains

[
- blockchain with
' -'- blocks BO, B1

Block B1 flows
on channel C

The second role of an orderer node is to distribute blocks to peers. In this example, orderer Ol distributes block B2 to
peer P1 and peer P2. Peer P1 processes block B2, resulting in a new block being added to ledger L1 on P1. In parallel,
peer P2 processes block B2, resulting in a new block being added to ledger L1 on P2. Once this process is complete,
the ledger L1 has been consistently updated on peers P1 and P2, and each may inform connected applications that the
transaction has been processed.

transactions
T1,T2,T3..

Principal PA (P1,
P2) communicates
via channel C.

Phase 3 begins with the orderer distributing blocks to all peers connected to it. Peers are connected to orderers on
channels such that when a new block is generated, all of the peers connected to the orderer will be sent a copy of the
new block. Each peer will process this block independently, but in exactly the same way as every other peer on the
channel. In this way, we’ll see that the ledger can be kept consistent. It’s also worth noting that not every peer needs to

4.10. Peers 65

hyperledger-fabricdocs Documentation, Release master

be connected to an orderer — peers can cascade blocks to other peers using the gossip protocol, who also can process
them independently. But let’s leave that discussion to another time!

Upon receipt of a block, a peer will process each transaction in the sequence in which it appears in the block. For
every transaction, each peer will verify that the transaction has been endorsed by the required organizations according
to the endorsement policy of the chaincode which generated the transaction. For example, some transactions may
only need to be endorsed by a single organization, whereas others may require multiple endorsements before they are
considered valid. This process of validation verifies that all relevant organizations have generated the same outcome
or result. Also note that this validation is different than the endorsement check in phase 1, where it is the application
that receives the response from endorsing peers and makes the decision to send the proposal transactions. In case the
application violates the endorsement policy by sending wrong transactions, the peer is still able to reject the transaction
in the validation process of phase 3.

If a transaction has been endorsed correctly, the peer will attempt to apply it to the ledger. To do this, a peer must
perform a ledger consistency check to verify that the current state of the ledger is compatible with the state of the
ledger when the proposed update was generated. This may not always be possible, even when the transaction has
been fully endorsed. For example, another transaction may have updated the same asset in the ledger such that the
transaction update is no longer valid and therefore can no longer be applied. In this way each peer’s copy of the ledger
is kept consistent across the network because they each follow the same rules for validation.

After a peer has successfully validated each individual transaction, it updates the ledger. Failed transactions are not
applied to the ledger, but they are retained for audit purposes, as are successful transactions. This means that peer
blocks are almost exactly the same as the blocks received from the orderer, except for a valid or invalid indicator on
each transaction in the block.

We also note that phase 3 does not require the running of chaincodes — this is done only during phase 1, and that’s im-
portant. It means that chaincodes only have to be available on endorsing nodes, rather than throughout the blockchain
network. This is often helpful as it keeps the logic of the chaincode confidential to endorsing organizations. This is
in contrast to the output of the chaincodes (the transaction proposal responses) which are shared with every peer in
the channel, whether or not they endorsed the transaction. This specialization of endorsing peers is designed to help
scalability.

Finally, every time a block is committed to a peer’s ledger, that peer generates an appropriate event. Block events
include the full block content, while block transaction events include summary information only, such as whether each
transaction in the block has been validated or invalidated. Chaincode events that the chaincode execution has produced
can also be published at this time. Applications can register for these event types so that they can be notified when
they occur. These notifications conclude the third and final phase of the transaction workflow.

In summary, phase 3 sees the blocks which are generated by the orderer consistently applied to the ledger. The strict
ordering of transactions into blocks allows each peer to validate that transaction updates are consistently applied across
the blockchain network.

Orderers and Consensus

This entire transaction workflow process is called consensus because all peers have reached agreement on the order and
content of transactions, in a process that is mediated by orderers. Consensus is a multi-step process and applications
are only notified of ledger updates when the process is complete — which may happen at slightly different times on
different peers.

We will discuss orderers in a lot more detail in a future orderer topic, but for now, think of orderers as nodes which
collect and distribute proposed ledger updates from applications for peers to validate and include on the ledger.

That’s it! We’ve now finished our tour of peers and the other components that they relate to in Hyperledger Fabric.
We’ve seen that peers are in many ways the most fundamental element — they form the network, host chaincodes
and the ledger, handle transaction proposals and responses, and keep the ledger up-to-date by consistently applying
transaction updates to it.

66 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

4.11 Private data

4.11.1 What is private data?

In cases where a group of organizations on a channel need to keep data private from other organizations on that
channel, they have the option to create a new channel comprising just the organizations who need access to the data.
However, creating separate channels in each of these cases creates additional administrative overhead (maintaining
chaincode versions, policies, MSPs, etc), and doesn’t allow for use cases in which you want all channel participants to
see a transaction while keeping a portion of the data private.

That’s why, starting in v1.2, Fabric offers the ability to create private data collections, which allow a defined subset
of organizations on a channel the ability to endorse, commit, or query private data without having to create a separate
channel.

4.11.2 What is a private data collection?

A collection is the combination of two elements:

1. The actual private data, sent peer-to-peer via gossip protocol to only the organization(s) authorized to see it.
This data is stored in a private database on the peer (sometimes called a “side” database, or “SideDB”). The
ordering service is not involved here and does not see the private data. Note that setting up gossip requires
setting up anchor peers in order to bootstrap cross-organization communication.

2. A hash of that data, which is endorsed, ordered, and written to the ledgers of every peer on the channel. The
hash serves as evidence of the transaction and is used for state validation and can be used for audit purposes.

The following diagram illustrates the ledger contents of a peer authorized to have private data and one which is not.

Peerl
Authorized Peer e

Unauthorized Peer

k1, secret value

A _
channell
Collection members may decide to share the private data with other parties if they get into a dispute or if they want to

transfer the asset to a third party. The third party can then compute the hash of the private data and see if it matches
the state on the channel ledger, proving that the state existed between the collection members at a certain point in time.

4.11. Private data 67

../gossip.html

hyperledger-fabricdocs Documentation, Release master

When to use a collection within a channel vs. a separate channel

* Use channels when entire transactions (and ledgers) must be kept confidential within a set of organizations that

are members of the channel.

* Use collections when transactions (and ledgers) must be shared among a set of organizations, but when only

a subset of those organizations should have access to some (or all) of the data within a transaction. Addition-
ally, since private data is disseminated peer-to-peer rather than via blocks, use private data collections when
transaction data must be kept confidential from ordering service nodes.

4.11.3 Transaction flow with private data

When private data collections are referenced in chaincode, the transaction flow is slightly different in order to protect
the confidentiality of the private data as transactions are proposed, endorsed, and committed to the ledger.

For details on transaction flows that don’t use private data refer to our documentation on transaction flow.

1.

The client application submits a proposal request to invoke a chaincode function (reading or writing private data)
to endorsing peers which are part of authorized organizations of the collection. The private data, or data used to
generate private data in chaincode, is sent in a t ransient field of the proposal.

The endorsing peers simulate the transaction and store the private data in a transient data store (a
temporary storage local to the peer). They distribute the private data, based on the collection policy, to authorized
peers via gossip.

. The endorsing peer sends the proposal response back to the client with public data, including a hash of the

private data key and value. No private data is sent back to the client. For more information on how endorsement
works with private data, click here.

The client application submits the transaction to the ordering service (with hashes of the private data) which gets
distributed into blocks as normal. The block with the hashed values is distributed to all the peers. In this way,
all peers on the channel can validate transactions with the hashes of the private data in a consistent way, without
knowing the actual private data.

At block-committal time, authorized peers use the collection policy to determine if they are authorized to have
access to the private data. If they do, they will first check their local t ransient data store to determine
if they have already received the private data at chaincode endorsement time. If not, they will attempt to pull
the private data from another peer. Then they will validate the private data against the hashes in the public block
and commit the transaction and the block. Upon validation/commit, the private data is moved to their copy of
the private state database and private writeset storage. The private data is then deleted from the transient
data store.

A use case to explain collections

Consider a group of five organizations on a channel who trade produce:

A Farmer selling his goods abroad

A Distributor moving goods abroad

A Shipper moving goods between parties

A Wholesaler purchasing goods from distributors

A Retailer purchasing goods from shippers and wholesalers

The Distributor might want to make private transactions with the Farmer and Shipper to keep the terms of the trades
confidential from the Wholesaler and the Retailer (so as not to expose the markup they’re charging).

68

Chapter 4. Key Concepts

../txflow.html
../gossip.html
../private-data-arch.html#endorsement

hyperledger-fabricdocs Documentation, Release master

The Distributor may also want to have a separate private data relationship with the Wholesaler because it charges
them a lower price than it does the Retailer.

The Wholesaler may also want to have a private data relationship with the Retailer and the Shipper.

Rather than defining many small channels for each of these relationships, multiple private data collections (PDC) can
be defined to share private data between:

1. PDC1: Distributor, Farmer and Shipper
2. PDC2: Distributor and Wholesaler
3. PDC3: Wholesaler, Retailer and Shipper

Private data collections
(PDC)

a

Distributor

Wholesaler

Wholesal
\ iRt esler e /

Using this example, peers owned by the Distributor will have multiple private databases inside their ledger which
includes the private data from the Distributor, Farmer and Shipper relationship and the Distributor and Wholesaler
relationship. Because these databases are kept separate from the database that holds the channel ledger, private data is
sometimes referred to as “SideDB”.

4.11. Private data 69

hyperledger-fabricdocs Documentation, Release master

Channel State

Distributor-Farmer-
Shipper

Private State
Distributor-Wholesaler

channell

4.11.4 How a private data collection is defined

For more details on collection definitions, and other low level information about private data and collections, refer to
the private data reference topic.

4.11.5 Purging data

For very sensitive data, even the parties sharing the private data might want — or might be required by government
regulations — to “purge” the data stored on their peers after a set amount of time, leaving behind only a hash of the
data to serve as immutable evidence of the transaction.

In some of these cases, the private data only needs to exist on the peer’s private database until it can be replicated into
a database external to the blockchain network. The data might also only need to exist on the peers until a chaincode
business process is done with it (trade settled, contract fulfilled, etc). To support the later use case, it is possible to
purge private data if it has not been modified once a set number of subsequent blocks have been added to the private
database.

4.12 Ledger

4.12.1 What is a Ledger?

A ledger contains the current state of a business as a journal of transactions. The earliest European and Chinese ledgers
date from almost 1000 years ago, and the Sumerians had stone ledgers 4000 years ago — but let’s start with a more
up-to-date example!

You’re probably used to looking at your bank account every month. What’s most important to you is the available
balance — it’s what you’re able to spend at the current moment in time. If you want to see how your balance was
derived, then you can look through the transaction credits and debits that determined it. This is a real life example

70 Chapter 4. Key Concepts

../private-data-arch.html
http://www.sciencephoto.com/media/686227/view/accounting-ledger-sumerian-cuneiform

hyperledger-fabricdocs Documentation, Release master

of a ledger — a state (your bank balance), and a set of ordered transactions (credits and debits) that determine it.
Hyperledger Fabric is motivated by these same two concerns — to present the current value of a set of ledger states,
and to capture the history of the transactions that determined these states.

Let’s take a closer look at the Hyperledger Fabric ledger structure!

4.12.2 A Blockchain Ledger

A blockchain ledger consists of two distinct, though related, parts — a world state and a blockchain.

Firstly, there’s a world state — a database that holds the current values of a set of ledger states. The world state makes
it easy for a program to get the current value of these states, rather than having to calculate them by traversing the entire
transaction log. Ledger states are, by default, expressed as key-value pairs, though we’ll see later that Hyperledger
Fabric provides flexibility in this regard. The world state can change frequently, as states can be created, updated and
deleted.

Secondly, there’s a blockchain — a transaction log that records all the changes that determine the world state. Trans-
actions are collected inside blocks that are appended to the blockchain — enabling you to understand the history of
changes that have resulted in the current world state. The blockchain data structure is very different to the world state
because once written, it cannot be modified. It is an immutable sequence of blocks, each of which contains a set of
ordered transactions.

Ledger

World State

Blockehain

L comprises B and W

B determines W

The visual vocabulary expressed in facts is as follows: Ledger L comprises blockchain B and World State W. Blockchain
B determines World State W. Also expressed as: World state W is derived from blockchain B.

It’s helpful to think of there being one logical ledger in a Hyperledger Fabric network. In reality, the network maintains
multiple copies of a ledger — which are kept consistent with every other copy through a process called consensus. The
term Distributed Ledger Technology (DLT) is often associated with this kind of ledger — one that is logically singular,
but has many consistent copies distributed throughout a network.

Let’s now examine the world state and blockchain data structures in more detail.

4.12.3 World State

The world state represents the current values of all ledger states. It’s extremely useful because programs usually need
the current value of a ledger state and that’s always easily available. You do not need to traverse the entire blockchain
to calculate the current value of any ledger state — you just get it directly from the world state.

4.12. Ledger 71

hyperledger-fabricdocs Documentation, Release master

ﬁ Ledger world state

A ledger state with
key=K. It contains a set
key=K, value =V

fkey=k-alue } of facts expressed as a

Wl simple value, V. The
{key=CAR1, value=Audi} version=0 - -
state is at version 0.

A ledger state with
key=K. It contains a set
{key=K, value = {KV} } of facts expressed as a

version=0 set of key-value pairs
{KV}. The state is at
version 0.

{key= CAR2, value = {type: BMW, color: red, owner: Jane}} version=0

The visual vocabulary expressed in facts is as follows: There is a ledger state with key=CARI and value=Audi. There
is a ledger state with key=CAR2 and a more complex value {model:BMW, color=red, owner=Jane}. Both states are
at version 0.

Ledger state is used to record application information to be shared via the blockchain. The example above shows ledger
states for two cars, CAR1 and CAR2. You can see that states have a key and a value. Your application programs invoke
chaincode which access states via simple APIs — they get, put and delete states using a state key. Notice how a state
value can be simple (Audi...) or complex (type:BMW...).

Physically, the world state is implemented as a database. This makes a lot of sense because a database provides a
rich set of operators for the efficient storage and retrieval of states. We’ll see later that Hyperledger Fabric can be
configured to use different world state databases to address the needs of different types of state values and the access
patterns required by applications, for example in complex queries.

Transactions capture changes to the world state, and as you’d expect, transactions have a lifecycle. They are created by
applications, and finally end up being committed to the ledger blockchain. The whole lifecycle is described in detail
here; but the key design point for Hyperledger Fabric is that only transactions that are signed by a set of endorsing
organizations will result in an update to the world state. If a transaction is not signed by sufficient endorsers, then it
will fail this validity check, and will not result in an update to the world state.

You’ll also notice that a state has a version number, and in the diagram above, states CAR1 and CAR?2 are at their start-
ing versions, 0. The version number of a state is incremented every time the state changes. It is also checked whenever
the state is updated — to make sure it matches the version when the transaction was created. This check ensures that
the world state changing from the same expected value to the same expected value as when the transaction was
created.

Finally, when a ledger is first created, the world state is empty. Because any transaction which represents a valid change
to world state is recorded on the blockchain, it means that the world state can be re-generated from the blockchain
at any time. This can be very convenient — for example, the world state is automatically generated when a peer is
created. Moreover, if a peer fails abnormally, the world state can be regenerated on peer restart, before transactions
are accepted.

4.12.4 Blockchain

Let’s now turn our attention from the ledger world state to the ledger blockchain.

The blockchain is a transaction log, structured as interlinked blocks, where each block contains a sequence of transac-
tions, each of which represents a query or update to the world state. The exact mechanism by which transactions are

72 Chapter 4. Key Concepts

../txflow.html

hyperledger-fabricdocs Documentation, Release master

ordered is discussed elsewhere — what’s important is that block sequencing, as well as transaction sequencing within
blocks, is established when blocks are first created.

Each block’s header includes a hash of the block’s transactions, as well a copy of the hash of the prior block’s header.
In this way, all transactions on the ledger are sequenced and cryptographically linked together. This hashing and
linking makes the ledger data very secure. Even if one node hosting the ledger was tampered with, it would not be
able to convince all the other nodes that it has the ‘correct’ blockchain because the ledger is distributed throughout a
network of independent nodes.

Physically, the blockchain is always implemented as a file, in contrast to the world state, which uses a database.
This is a sensible design choice as the blockchain data structure is heavily biased towards a very small set of simple

operations. Appending to the end of the blockchain is the primary operation, and query is currently a relatively
infrequent operation.

Let’s have a look at the structure of a blockchain in a little more detail.

/\/\/ Blockchain
HO H2 Block header
Do D2 Block data
(genesis)
Transaction
MO M2 Block metadata
/\/\/ H2 is chained to H1

The visual vocabulary expressed in facts is as follows: Blockchain B contains blocks B0, Bl, B2, B3. B0 is the first
block in the blockchain, the genesis block

In the above diagram, we can see that block B2 has a block data D2 which contains all its transactions: TS, T6, T7.

Most importantly, B2 has a block header H2, which contains a cryptographic hash of all the transactions in D2 as
well as with the equivalent hash from the previous block B1. In this way, blocks are inextricably and immutably linked
to each other, which the term blockchain so neatly captures!

Finally, as you can see in the diagram, the first block in the blockchain is called the genesis block. It’s the starting
point for the ledger, though it does not contain any user transactions. Instead, it contains a configuration transaction
containing the initial state of the network channel (not shown). We discuss the genesis block in more detail when we
discuss the blockchain network and channels in the documentation.

4.12.5 Blocks

Let’s have a closer look at the structure of a block. It consists of three sections
¢ Block Header
This section comprises three fields, written when a block is created.

— Block number: An integer starting at O (the genesis block), and increased by 1 for every new block
appended to the blockchain.

4.12. Ledger 73

../peers/peers.html#peers-and-orderers
../channels.html

hyperledger-fabricdocs Documentation, Release master

— Current Block Hash: The hash of all the transactions contained in the current block.

— Previous Block Hash: A copy of the hash from the previous block in the blockchain.

H2 Block header
ﬂ H2 (block number) 2
: 2

Block number

D2
Hash of current block
C H 2 (current block hash) _ transactions

Copy of hash from
previous block

0
N

PH1
M2

P H 1 (previous block hash)

V2 is detailed view of H2

The visual vocabulary expressed in facts is as follows: Block header H2 of block B2 consists of block number 2,
the hash CH2 of the current block data D2, and a copy of a hash PHI from the previous block, block number 1.

¢ Block Data

This section contains a list of transactions arranged in order. It is written when the block is created. These
transactions have a rich but straightforward structure, which we describe later in this topic.

¢ Block Metadata

This section contains the time when the block was written, as well as the certificate, public key and signature
of the block writer. Subsequently, the block committer also adds a valid/invalid indicator for every transaction,
though this information is not included in the hash, as that is created when the block is created.

4.12.6 Transactions

As we’ve seen, a transaction captures changes to the world state. Let’s have a look at the detailed blockdata structure
which contains the transactions in a block.

74 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

T4

H4

Transaction
S 4 Header
D1 Signature
: P4 Proposal
Response
R4
Endorsements
E4 T4 V4 |vais detailed view of T4

The visual vocabulary expressed in facts is as follows: Transaction T4 in blockdata D1 of block Bl consists of trans-
action header, H4, a transaction signature, S4, a transaction proposal P4, a transaction response, R4, and a list of
endorsements, E4.

In the above example, we can see the following fields:

Header

This section, illustrated by H4, captures some essential metadata about the transaction — for example, the name
of the relevant chaincode, and its version.

Signature

This section, illustrated by S4, contains a cryptographic signature, created by the client application. This field
is used to check that the transaction details have not been tampered with, as it requires the application’s private
key to generate it.

Proposal

This field, illustrated by P4, encodes the input parameters supplied by an application to the chaincode which
creates the proposed ledger update. When the chaincode runs, this proposal provides a set of input parameters,
which, in combination with the current world state, determines the new world state.

Response

This section, illustrated by R4, captures the before and after values of the world state, as a Read Write set
(RW-set). It’s the output of a chaincode, and if the transaction is successfully validated, it will be applied to the
ledger to update the world state.

Endorsements

As shown in E4, this is a list of signed transaction responses from each required organization sufficient to satisfy
the endorsement policy. You'll notice that, whereas only one transaction response is included in the transaction,
there are multiple endorsements. That’s because each endorsement effectively encodes its organization’s partic-
ular transaction response — meaning that there’s no need to include any transaction response that doesn’t match
sufficient endorsements as it will be rejected as invalid, and not update the world state.

That concludes the major fields of the transaction — there are others, but these are the essential ones that you need to
understand to have a solid understanding of the ledger data structure.

4.12.

Ledger 75

hyperledger-fabricdocs Documentation, Release master

4.12.7 World State database options

The world state is physically implemented as a database, to provide simple and efficient storage and retrieval of ledger
states. As we’ve seen, ledger states can have simple or complex values, and to accommodate this, the world state
database implementation can vary, allowing these values to be efficiently implemented. Options for the world state
database currently include LevelDB and CouchDB.

LevelDB is the default and is particularly appropriate when ledger states are simple key-value pairs. A LevelDB
database is closely co-located with a network node — it is embedded within the same operating system process.

CouchDB is a particularly appropriate choice when ledger states are structured as JSON documents because CouchDB
supports the rich queries and update of richer data types often found in business transactions. Implementation-wise,
CouchDB runs in a separate operating system process, but there is still a 1:1 relation between a network node and a
CouchDB instance. All of this is invisible to chaincode. See CouchDB as the StateDatabase for more information on
CouchDB.

In LevelDB and CouchDB, we see an important aspect of Hyperledger Fabric — it is pluggable. The world state
database could be a relational data store, or a graph store, or a temporal database. This provides great flexibility in the
types of ledger states that can be efficiently accessed, allowing Hyperledger Fabric to address many different types of
problems.

4.12.8 Example Ledger: fabcar
As we end this topic on the ledger, let’s have a look at a sample ledger. If you’ve run the fabcar sample application,
then you’ve created this ledger.

The fabcar sample app creates a set of 10 cars, of different color, make, model and owner. Here’s what the ledger
looks like after the first four cars have been created.

key=CAR3, value={color: yellow, make: Volkswagen, model: Passat, owner: Max} version=0
key=CAR2, value={color: green, make: Hyundai, model: Tucson, owner: Jin Soo} version=0
key=CAR1, value={color: red, make: Ford, model: Mustang, owner: Brad} version=0
key=CARO, value={color: blue, make: Toyota, model: Prius, owner: Tomoko} version=0

(genesis) 1

The visual vocabulary expressed in facts is as follows: The ledger L, comprises a world state, W and a blockchain, B.
W contains four states with keys: CARI, CAR2, CAR3 and CAR4. B contains two blocks, 0 and 1. Block I contains
four transactions: TI, T2, T3, T4.

We can see that the ledger world state contains states that correspond to CARO, CAR1, CAR2 and CAR3. CARO has
a value which indicates that it is a blue Toyota Prius, owned by Tomoko, and we can see similar states and values for
the other cars. Moreover, we can see that all car states are at version number 0, indicating that this is their starting
version number — they have not been updated since they were created.

76 Chapter 4. Key Concepts

../couchdb_as_state_database.html
../write_first_app.html

hyperledger-fabricdocs Documentation, Release master

We can also see that the ledger blockchain contains two blocks. Block 0 is the genesis block, though it does not contain
any transactions that relate to cars. Block 1 however, contains transactions T1, T2, T3, T4 and these correspond to
transactions that created the initial states for CARO to CAR3 in the world state. We can see that block 1 is linked to
block 0.

We have not shown the other fields in the blocks or transactions, specifically headers and hashes. If you're interested
in the precise details of these, you will find a dedicated reference topic elsewhere in the documentation. It gives you
a fully worked example of an entire block with its transactions in glorious detail — but for now, you have achieved a
solid conceptual understanding of a Hyperledger Fabric ledger. Well done!

4.12.9 More information

See the Transaction Flow, Read-Write set semantics and CouchDB as the StateDatabase topics for a deeper dive on
transaction flow, concurrency control, and the world state database.

4.13 Use Cases

The Hyperledger Requirements WG is documenting a number of blockchain use cases and maintaining an inventory
here.

4.13. Use Cases 77

../txflow.html
../readwrite.html
../couchdb_as_state_database.html
https://wiki.hyperledger.org/groups/requirements/use-case-inventory

hyperledger-fabricdocs Documentation, Release master

78

Chapter 4. Key Concepts

CHAPTER B

Getting Started

5.1 Prerequisites

Before we begin, if you haven’t already done so, you may wish to check that you have all the prerequisites below
installed on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger
Fabric.

5.1.1 Install cURL

Download the latest version of the cURL tool if it is not already installed or if you get errors running the curl commands
from the documentation.

Note: If you're on Windows please see the specific note on Windows extras below.

5.1.2 Docker and Docker Compose
You will need the following installed on the platform on which you will be operating, or developing on (or for),
Hyperledger Fabric:

* MacOSX, *nix, or Windows 10: Docker Docker version 17.06.2-ce or greater is required.

¢ Older versions of Windows: Docker Toolbox - again, Docker version Docker 17.06.2-ce or greater is required.

You can check the version of Docker you have installed with the following command from a terminal prompt:

docker —-version

Note: Installing Docker for Mac or Windows, or Docker Toolbox will also install Docker Compose. If you already
had Docker installed, you should check that you have Docker Compose version 1.14.0 or greater installed. If not, we

79

https://curl.haxx.se/download.html
https://www.docker.com/get-docker
https://docs.docker.com/toolbox/toolbox_install_windows/

hyperledger-fabricdocs Documentation, Release master

recommend that you install a more recent version of Docker.

You can check the version of Docker Compose you have installed with the following command from a terminal prompt:

docker-compose —-version

5.1.3 Go Programming Language

Hyperledger Fabric uses the Go Programming Language for many of its components.
* Go version 1.10.x is required.

Given that we will be writing chaincode programs in Go, there are two environment variables you will need to set
properly; you can make these settings permanent by placing them in the appropriate startup file, such as your personal
~/ .bashrc file if you are using the bash shell under Linux.

First, you must set the environment variable GOPATH to point at the Go workspace containing the downloaded Fabric
code base, with something like:

export GOPATH=S$HOME/go

Note: You must set the GOPATH variable

Even though, in Linux, Go’s GOPATH variable can be a colon-separated list of directories, and will use a default value
of SHOME/go if it is unset, the current Fabric build framework still requires you to set and export that variable, and
it must contain only the single directory name for your Go workspace. (This restriction might be removed in a future
release.)

Second, you should (again, in the appropriate startup file) extend your command search path to include the Go bin
directory, such as the following example for bash under Linux:

export PATH=$PATH:S$SGOPATH/bin

While this directory may not exist in a new Go workspace installation, it is populated later by the Fabric build system
with a small number of Go executables used by other parts of the build system. So even if you currently have no such
directory yet, extend your shell search path as above.

5.1.4 Node.js Runtime and NPM

If you will be developing applications for Hyperledger Fabric leveraging the Hyperledger Fabric SDK for Node.js,
you will need to have version 8.9.x of Node.js installed.

Note: Node.js version 9.x is not supported at this time.

* Node.js - version 8.9.x or greater

Note: Installing Node.js will also install NPM, however it is recommended that you confirm the version of NPM
installed. You can upgrade the npm tool with the following command:

80 Chapter 5. Getting Started

https://golang.org/dl/
https://nodejs.org/en/download/

hyperledger-fabricdocs Documentation, Release master

npm install npm@5.6.0 -g

Python

Note: The following applies to Ubuntu 16.04 users only.

By default Ubuntu 16.04 comes with Python 3.5.1 installed as the python3 binary. The Fabric Node.js SDK requires
an iteration of Python 2.7 in order for npm install operations to complete successfully. Retrieve the 2.7 version
with the following command:

sudo apt-get install python

Check your version(s):

’python ——-version

5.1.5 Windows extras

If you are developing on Windows 7, you will want to work within the Docker Quickstart Terminal which uses Git
Bash and provides a better alternative to the built-in Windows shell.

However experience has shown this to be a poor development environment with limited functionality. It is suitable
to run Docker based scenarios, such as Getting Started, but you may have difficulties with operations involving the
make and docker commands.

On Windows 10 you should use the native Docker distribution and you may use the Windows PowerShell. However,
for the binaries command to succeed you will still need to have the uname command available. You can get it as
part of Git but beware that only the 64bit version is supported.

Before running any git clone commands, run the following commands:

git config —--global core.autocrlf false
git config —-global core.longpaths true

You can check the setting of these parameters with the following commands:

git config ——get core.autocrlf
git config —--get core.longpaths

These need to be false and t rue respectively.

The curl command that comes with Git and Docker Toolbox is old and does not handle properly the redirect used in
Getting Started. Make sure you install and use a newer version from the cURL downloads page

For Node.js you also need the necessary Visual Studio C++ Build Tools which are freely available and can be installed
with the following command:

npm install --global windows-build-tools

See the NPM windows-build-tools page for more details.

Once this is done, you should also install the NPM GRPC module with the following command:

5.1. Prerequisites 81

https://git-scm.com/downloads
https://git-scm.com/downloads
https://curl.haxx.se/download.html
https://www.npmjs.com/package/windows-build-tools

hyperledger-fabricdocs Documentation, Release master

npm install --global grpc

Your environment should now be ready to go through the Gertting Started samples and tutorials.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the S#ill Have Questions? page for some tips on where to find additional help.

5.2 Install Samples, Binaries and Docker Images

While we work on developing real installers for the Hyperledger Fabric binaries, we provide a script that will download
and install samples and binaries to your system. We think that you’ll find the sample applications installed useful to
learn more about the capabilities and operations of Hyperledger Fabric.

Note: If you are running on Windows you will want to make use of the Docker Quickstart Terminal for the upcoming
terminal commands. Please visit the Prerequisites if you haven’t previously installed it.

If you are using Docker Toolbox on Windows 7 or macOS, you will need to use a location under C : \Users (Windows
7) or /Users (macOS) when installing and running the samples.

If you are using Docker for Mac, you will need to use a location under /Users, /Volumes, /private, or /tmp.
To use a different location, please consult the Docker documentation for file sharing.

If you are using Docker for Windows, please consult the Docker documentation for shared drives and use a location
under one of the shared drives.

Determine a location on your machine where you want to place the fabric-samples repository and enter that directory
in a terminal window. The command that follows will perform the following steps:

1. If needed, clone the hyperledger/fabric-samples repository
2. Checkout the appropriate version tag

3. Install the Hyperledger Fabric platform-specific binaries and config files for the version specified into the /bin
and /config directories of fabric-samples

4. Download the Hyperledger Fabric docker images for the version specified

Once you are ready, and in the directory into which you will install the Fabric Samples and binaries, go ahead and
execute the following command:

curl -sSL http://bit.ly/2ysbOFE | bash -s 1.3.0

Note: If you want to download different versions for Fabric, Fabric-ca and thirdparty Docker images, you must pass
the version identifier for each.

curl -sSL http://bit.ly/2ysbOFE | bash -s <fabric> <fabric-ca> <thirdparty>
curl -sSL http://bit.ly/2ysbOFE | bash -s 1.3.0 1.3.0 0.4.13

Note: If you get an error running the above curl command, you may have too old a version of curl that does not
handle redirects or an unsupported environment.

82 Chapter 5. Getting Started

https://docs.docker.com/docker-for-mac/#file-sharing
https://docs.docker.com/docker-for-windows/#shared-drives

hyperledger-fabricdocs Documentation, Release master

Please visit the Prerequisites page for additional information on where to find the latest version of curl and get the right
environment. Alternately, you can substitute the un-shortened URL: https://raw.githubusercontent.com/hyperledger/
fabric/master/scripts/bootstrap.sh

Note: You can use the command above for any published version of Hyperledger Fabric. Simply replace /.3.0 with
the version identifier of the version you wish to install.

The command above downloads and executes a bash script that will download and extract all of the platform-specific
binaries you will need to set up your network and place them into the cloned repo you created above. It retrieves the
following platform-specific binaries:

* configtxgen,
e configtxlator,
* cryptogen,
e discover,
* idemixgen
e orderer,
e peer, and
e fabric-ca-client
and places them in the bin sub-directory of the current working directory.

You may want to add that to your PATH environment variable so that these can be picked up without fully qualifying
the path to each binary. e.g.:

export PATH=<path to download location>/bin:$PATH

Finally, the script will download the Hyperledger Fabric docker images from Docker Hub into your local Docker
registry and tag them as ‘latest’.

The script lists out the Docker images installed upon conclusion.

Look at the names for each image; these are the components that will ultimately comprise our Hyperledger Fabric
network. You will also notice that you have two instances of the same image ID - one tagged as “amd64-1.x.x” and
one tagged as “latest”. Prior to 1.2.0, the image being downloaded was determined by uname -m and showed as
“x86_64-1.x.x".

Note: On different architectures, the x86_64/amd64 would be replaced with the string identifying your architecture.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

Before we begin, if you haven’t already done so, you may wish to check that you have all the Prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

Once you have the prerequisites installed, you are ready to download and install HyperLedger Fabric. While we work
on developing real installers for the Fabric binaries, we provide a script that will Install Samples, Binaries and Docker
Images to your system. The script also will download the Docker images to your local registry.

5.2. Install Samples, Binaries and Docker Images 83

https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh
https://raw.githubusercontent.com/hyperledger/fabric/master/scripts/bootstrap.sh
https://hub.docker.com/u/hyperledger/

hyperledger-fabricdocs Documentation, Release master

5.3 Hyperledger Fabric SDKs

Hyperledger Fabric offers a number of SDKs to support various programming languages. There are two officially
released SDKs for Node.js and Java:

» Hyperledger Fabric Node SDK and Node SDK documentation.
* Hyperledger Fabric Java SDK.

In addition, there are three more SDKs that have not yet been officially released (for Python, Go and REST), but they
are still available for downloading and testing:

» Hyperledger Fabric Python SDK.
* Hyperledger Fabric Go SDK.
* Hyperledger Fabric REST SDK.

5.4 Hyperledger Fabric CA

Hyperledger Fabric provides an optional certificate authority service that you may choose to use to generate the
certificates and key material to configure and manage identity in your blockchain network. However, any CA that
can generate ECDSA certificates may be used.

84 Chapter 5. Getting Started

https://github.com/hyperledger/fabric-sdk-node
https://fabric-sdk-node.github.io/
https://github.com/hyperledger/fabric-sdk-java
https://github.com/hyperledger/fabric-sdk-py
https://github.com/hyperledger/fabric-sdk-go
https://github.com/hyperledger/fabric-sdk-rest
http://hyperledger-fabric-ca.readthedocs.io/en/latest

CHAPTER O

Tutorials

We offer tutorials to get you started with Hyperledger Fabric. The first is oriented to the Hyperledger Fabric appli-
cation developer, Writing Your First Application. It takes you through the process of writing your first blockchain
application for Hyperledger Fabric using the Hyperledger Fabric Node SDK.

The second tutorial is oriented towards the Hyperledger Fabric network operators, Building Your First Network. This
one walks you through the process of establishing a blockchain network using Hyperledger Fabric and provides a basic
sample application to test it out.

There are also tutorials for updating your channel, Adding an Org to a Channel, and upgrading your network to a later
version of Hyperledger Fabric, Upgrading Your Network Components.

Finally, we offer two chaincode tutorials. One oriented to developers, Chaincode for Developers, and the other oriented
to operators, Chaincode for Operators.

Note: If you have questions not addressed by this documentation, or run into issues with any of the tutorials, please
visit the Still Have Questions? page for some tips on where to find additional help.

6.1 Writing Your First Application

Note: If you’re not yet familiar with the fundamental architecture of a Fabric network, you may want to visit the
Introduction and Building Your First Network documentation prior to continuing.

In this section we’ll be looking at a handful of sample programs to see how Fabric apps work. These apps (and the
smart contract they use) — collectively known as fabcar — provide a broad demonstration of Fabric functionality.
Notably, we will show the process for interacting with a Certificate Authority and generating enrollment certificates,
after which we will leverage these identities to query and update a ledger.

We’ll go through three principle steps:

85

https://github.com/hyperledger/fabric-sdk-node

hyperledger-fabricdocs Documentation, Release master

1. Setting up a development environment. Our application needs a network to interact with, so we’ll
download one stripped down to just the components we need for registration/enrollment, queries and

updates:
Blockchain Network
Application Developer
Identity
NI
LI) R: v E
o Run smart contracts vy v
Application
Receive ledger updates
ledger

2. Learning the parameters of the sample smart contract our app will use. Our smart contract
contains various functions that allow us to interact with the ledger in different ways. We’ll go in and
inspect that smart contract to learn about the functions our applications will be using.

3. Developing the applications to be able to query and update assets on the ledger. We’ll get into the
app code itself (our apps have been written in Javascript) and manually manipulate the variables to run
different kinds of queries and updates.

After completing this tutorial you should have a basic understanding of how an application is programmed in conjunc-
tion with a smart contract to interact with the ledger (i.e. the peer) on a Fabric network.

6.1.1 Setting up your Dev Environment

If you’ve already run through Building Your First Network, you should have your dev environment setup and will have
downloaded fabric-samples as well as the accompanying artifacts. To run this tutorial, what you need to do now is tear
down any existing networks you have, which you can do by issuing the following:

./byfn.sh down

If you don’t have a development environment and the accompanying artifacts for the network and applications, visit
the Prerequisites page and ensure you have the necessary dependencies installed on your machine.

Next, if you haven’t done so already, visit the Install Samples, Binaries and Docker Images page and follow the pro-
vided instructions. Return to this tutorial once you have cloned the fabric-samples repository, and downloaded
the latest stable Fabric images and available utilities.

At this point everything should be installed. Navigate to the fabcar subdirectory within your fabric-samples
repository and take a look at what’s inside:

cd fabric-samples/fabcar && 1s

You should see the following:

enrollAdmin. js invoke. js package. json query. js registerUser. js_,
—startFabric.sh

86 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

Before starting we also need to do a little housekeeping. Run the following command to kill any stale or active
containers:

docker rm —-f $(docker ps -aq)

Clear any cached networks:

Press 'y' when prompted by the command

docker network prune

And lastly if you’ve already run through this tutorial, you’ll also want to delete the underlying chaincode image for
the fabcar smart contract. If you’re a user going through this content for the first time, then you won’t have this
chaincode image on your system:

docker rmi dev-peer0.orgl.example.com-fabcar-1.0-
—5c906e402ed29£20260ae42283216aa75549c571e2e380£3615826365d8269ba

Install the clients & launch the network

Note: The following instructions require you to be in the fabcar subdirectory within your local clone of the
fabric-samples repo. Remain at the root of this subdirectory for the remainder of this tutorial.

Run the following command to install the Fabric dependencies for the applications. We are concerned with
fabric—ca-client which will allow our app(s) to communicate with the CA server and retrieve identity ma-
terial, and with fabric-client which allows us to load the identity material and talk to the peers and ordering
service.

’npm install

Launch your network using the startFabric.sh shell script. This command will spin up our various Fabric
entities and launch a smart contract container for chaincode written in Golang:

’./startFabric.sh

You also have the option of running this tutorial against chaincode written in Node.js. If you’d like to pursue this route,
issue the following command instead:

’./startFabric.sh node

Note: Be aware that the Node.js chaincode scenario will take roughly 90 seconds to complete; perhaps longer. The
script is not hanging, rather the increased time is a result of the fabric-shim being installed as the chaincode image is
being built.

Alright, now that you’ve got a sample network and some code, let’s take a look at how the different pieces fit together.

6.1.2 How Applications Interact with the Network

For a more in-depth look at the components in our fabcar network (and how they’re deployed) as well as how
applications interact with those components on more of a granular level, see understand_fabcar_network.

6.1. Writing Your First Application 87

https://fabric-shim.github.io/

hyperledger-fabricdocs Documentation, Release master

Developers more interested in seeing what applications do — as well as looking at the code itself to see how an
application is constructed — should continue. For now, the most important thing to know is that applications use a
software development kit (SDK) to access the APIs that permit queries and updates to the ledger.

6.1.3 Enrolling the Admin User

Note: The following two sections involve communication with the Certificate Authority. You may find it useful to
stream the CA logs when running the upcoming programs.

To stream your CA logs, split your terminal or open a new shell and issue the following:

docker logs —f ca.example.com

Now hop back to your terminal with the fabcar content. ..

When we launched our network, an admin user — admin — was registered with our Certificate Authority. Now we
need to send an enroll call to the CA server and retrieve the enrollment certificate (eCert) for this user. We won’t delve
into enrollment details here, but suffice it to say that the SDK and by extension our applications need this cert in order
to form a user object for the admin. We will then use this admin object to subsequently register and enroll a new user.
Send the admin enroll call to the CA server:

node enrollAdmin. js

This program will invoke a certificate signing request (CSR) and ultimately output an eCert and key material into a
newly created folder — hfc—key—store — at the root of this project. Our apps will then look to this location when
they need to create or load the identity objects for our various users.

6.1.4 Register and Enroll userl

With our newly generated admin eCert, we will now communicate with the CA server once more to register and enroll
a new user. This user — userl — will be the identity we use when querying and updating the ledger. It’s important to
note here that it is the admin identity that is issuing the registration and enrollment calls for our new user (i.e. this
user is acting in the role of a registrar). Send the register and enroll calls for user1:

node registerUser.js

Similar to the admin enrollment, this program invokes a CSR and outputs the keys and eCert into the
hfc-key-store subdirectory. So now we have identity material for two separate users — admin & userl. Time
to interact with the ledger. ..

6.1.5 Querying the Ledger

Queries are how you read data from the ledger. This data is stored as a series of key-value pairs, and you can query for
the value of a single key, multiple keys, or — if the ledger is written in a rich data storage format like JSON — perform
complex searches against it (looking for all assets that contain certain keywords, for example).

This is a representation of how a query works:

88 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

Blockchain Network

Network query
endpoint T T s
LN v— ;
M Y
o Run query
Application Smart contract I:H:H:H:H:I
Return query results ledger

First, let’s run our query . js program to return a listing of all the cars on the ledger. We will use our second identity
—userl — as the signing entity for this application. The following line in our program specifies userl as the signer:

fabric_client.getUserContext ('userl', true);

Recall that the userl enrollment material has already been placed into our hfc-key-store subdirectory, so we
simply need to tell our application to grab that identity. With the user object defined, we can now proceed with reading
from the ledger. A function that will query all the cars, queryAllCars, is pre-loaded in the app, so we can simply
run the program as is:

node query.js

It should return something like this:

Successfully loaded userl from persistence
Query has completed, checking results

Response is [{"Key":"CARO", "Record":{"colour":"blue", "make":"Toyota", "model":"Prius
—","owner":"Tomoko"}},

{"Key":"CAR1", "Record":{"colour":"red", "make" :"Ford", "model":"Mustang", "owner":
—~"Brad"}},

{"Key":"CAR2", "Record":{"colour":"green", "make":"Hyundai", "model":"Tucson", "owner":
—~"Jin Soo"}},

{"Key":"CAR3", "Record":{"colour":"yellow", "make":"Volkswagen", "model":"Passat", "owner
:_)" : "Max" } } ,

{"Key":"CAR4", "Record":{"colour":"black","make":"Tesla","model":"S","owner":"Adriana

<"1},

{"Key":"CAR5", "Record":{"colour":"purple", "make":"Peugeot", "model":"205", "owner":
—"Michel"}},

{"Key":"CARG6", "Record":{"colour":"white","make":"Chery", "model":"S22L", "owner":"Aarav
="}},

{"Key":"CAR7", "Record":{"colour":"violet","make":"Fiat","model":"Punto", "owner":"Pari
—="}1},

{"Key":"CAR8", "Record":{"colour":"indigo", "make":"Tata","model":"Nano", "owner":
—"Valeria"}},

{"Key":"CAR9", "Record":{"colour":"brown", "make":"Holden", "model":"Barina", "owner":
—"Shotaro"}}]

These are the 10 cars. A black Tesla Model S owned by Adriana, a red Ford Mustang owned by Brad, a violet Fiat
Punto owned by Pari, and so on. The ledger is key-value based and, in our implementation, the key is CARO through

6.1. Writing Your First Application 89

hyperledger-fabricdocs Documentation, Release master

CARO9. This will become particularly important in a moment.
Let’s take a closer look at this program. Use an editor (e.g. atom or visual studio) and open query. js.

The initial section of the application defines certain variables such as channel name, cert store location and network
endpoints. In our sample app, these variables have been baked-in, but in a real app these variables would have to be
specified by the app dev.

var channel = fabric_client.newChannel ('mychannel');
var peer = fabric_client.newPeer ('grpc://localhost:7051");
channel.addPeer (peer) ;

var member_user = null;

var store_path = path.join(__dirname, 'hfc-key-store');
console.log('Store path:'+store_path);

var tx_id = null;

This is the chunk where we construct our query:

// queryCar chaincode function - requires 1 argument, ex: args: ['CAR4'],
// queryAllCars chaincode function - requires no arguments , ex: args: [''],
const request = {

//targets : —-— letting this default to the peers assigned to the channel

chaincodeId: 'fabcar',
fcn: 'queryAllCars',
args: ['']

}i

When the application ran, it invoked the fabcar chaincode on the peer, ran the queryAllCars function within it,
and passed no arguments to it.

To take a look at the available functions within our smart contract, navigate to the chaincode/fabcar/go subdi-
rectory at the root of fabric—samples and open fabcar . go in your editor.

Note: These same functions are defined within the Node.js version of the fabcar chaincode.

You’ll see that we have the following functions available to call: initLedger, queryCar, queryAllCars,
createCar, and changeCarOwner.

Let’s take a closer look at the queryAllCars function to see how it interacts with the ledger.

func (s *SmartContract) queryAllCars (APIstub shim.ChaincodeStubInterface) sc.Response

—{

startKey := "CARO"
endKey := "CAR999"
resultsIterator, err := APIstub.GetStateByRange (startKey, endKey)

This defines the range of queryAllCars. Every car between CARO and CAR999 — 1,000 cars in all, assuming every
key has been tagged properly — will be returned by the query.

Below is a representation of how an app would call different functions in chaincode. Each function must be coded
against an available API in the chaincode shim interface, which in turn allows the smart contract container to properly
interface with the peer ledger.

90 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

4

@ | Make | | Model | | Color | |Owner|

S createCar world state

queryAllCars
Application

queryCarProperties

updateCarColor L || L

updateCarOwner

Smart contract ledger

We can see our queryAllCars function, as well as one called createCar, that will allow us to update the ledger
and ultimately append a new block to the chain in a moment.

But first, go back to the query . js program and edit the constructor request to query CAR4. We do this by changing
the function in query. js from queryAllCars to queryCar and passing CAR4 as the specific key.

The query. js program should now look like this:

const request = {
//targets : ——-— letting this default to the peers assigned to the channel
chaincodeId: 'fabcar',
fcn: 'queryCar',
args: ['CAR4']

}i

Save the program and navigate back to your fabcar directory. Now run the program again:

’node query.js

You should see the following:

’{"colour":"black","make":"Tesla","model":"S","owner":"Adriana"}

If you go back and look at the result from when we queried every car before, you can see that CAR4 was Adriana’s
black Tesla model S, which is the result that was returned here.

Using the queryCar function, we can query against any key (e.g. CARO) and get whatever make, model, color, and
owner correspond to that car.

Great. At this point you should be comfortable with the basic query functions in the smart contract and the handful of
parameters in the query program. Time to update the ledger. . .

6.1.6 Updating the Ledger
Now that we’ve done a few ledger queries and added a bit of code, we’re ready to update the ledger. There are a lot of
potential updates we could make, but let’s start by creating a car.

Below we can see how this process works. An update is proposed, endorsed, then returned to the application, which
in turn sends it to be ordered and written to every peer’s ledger:

6.1. Writing Your First Application 91

hyperledger-fabricdocs Documentation, Release master

Blockchain Network

Network
endpoint
LA Propose update transactions update
Application Order transaction proposals M V
Notify ledger updated Smart contract I:H:H:H:H:I

Our first update to the ledger will be to create a new car. We have a separate Javascript program — invoke. js — that
we will use to make updates. Just as with queries, use an editor to open the program and navigate to the code block
where we construct our invocation:

// createCar chaincode function - requires 5 args, ex: args: ['CAR12', 'Honda',
—'Accord', 'Black', 'Tom'],
// changeCarOwner chaincode function - requires 2 args , ex: args: ['CARIO', 'Barry'],
// must send the proposal to endorsing peers
var request = {

//targets: let default to the peer assigned to the client

chaincodeId: 'fabcar',

fcn: ',

args: [''],

chainId: 'mychannel',

txId: tx_id
i

You’ll see that we can call one of two functions — createCar or changeCarOwner. First, let’s create a red Chevy
Volt and give it to an owner named Nick. We’re up to CAR9 on our ledger, so we’ll use CAR10 as the identifying key
here. Edit this code block to look like this:

var request = {
//targets: let default to the peer assigned to the client
chaincodeId: 'fabcar',
fcn: 'createCar',
args: ['CAR10', 'Chevy', 'Volt', 'Red', 'Nick'],
chainId: 'mychannel',
txId: tx_id
bi

Save it and run the program:

node invoke. js

There will be some output in the terminal about ProposalResponse and promises. However, all we’re concerned
with is this message:

92 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

The transaction has been committed on peer localhost:7053

To see that this transaction has been written, go back to query . js and change the argument from CAR4 to CAR10.

In other words, change this:

const request = {
//targets : ——— letting this default to the peers assigned to the channel
chaincodeId: 'fabcar',
fcn: 'queryCar',
args: ['CAR4']
}i
To this:
const request = {
//targets : ——— letting this default to the peers assigned to the channel
chaincodeId: 'fabcar',
fcn: 'queryCar',
args: ['CAR1O0'"]
}i

Save once again, then query:

’node query.js

‘Which should return this:

’Response is {"colour":"Red", "make":"Chevy", "model":"Volt", "owner":"Nick"}

Congratulations. You’ve created a car!

So now that we’ve done that, let’s say that Nick is feeling generous and he wants to give his Chevy Volt to someone
named Dave.

To do this go back to invoke. js and change the function from createCar to changeCarOwner and input the
arguments like this:

var request = {
//targets: let default to the peer assigned to the client
chaincodeId: 'fabcar',
fcn: 'changeCarOwner',
args: ['CAR10', 'Dave'l,
chainId: 'mychannel',
txId: tx_id
}i

The first argument — CAR10 — reflects the car that will be changing owners. The second argument — Dave — defines
the new owner of the car.

Save and execute the program again:

’node invoke. js

Now let’s query the ledger again and ensure that Dave is now associated with the CAR10 key:

’node query.js

It should return this result:

6.1. Writing Your First Application 93

hyperledger-fabricdocs Documentation, Release master

Response is {"colour":"Red", "make":"Chevy", "model":"Volt", "owner":"Dave"}

The ownership of CAR10 has been changed from Nick to Dave.

Note: In a real world application the chaincode would likely have some access control logic. For example, only
certain authorized users may create new cars, and only the car owner may transfer the car to somebody else.

6.1.7 Summary

Now that we’ve done a few queries and a few updates, you should have a pretty good sense of how applications interact
with the network. You’ve seen the basics of the roles smart contracts, APIs, and the SDK play in queries and updates
and you should have a feel for how different kinds of applications could be used to perform other business tasks and
operations.

In subsequent documents we’ll learn how to actually write a smart contract and how some of these more low level
application functions can be leveraged (especially relating to identity and membership services).

6.1.8 Additional Resources

The Hyperledger Fabric Node SDK repo is an excellent resource for deeper documentation and sample code. You can
also consult the Fabric community and component experts on Hyperledger Rocket Chat.

6.2 Building Your First Network

Note: These instructions have been verified to work against the latest stable Docker images and the pre-compiled
setup utilities within the supplied tar file. If you run these commands with images or tools from the current master
branch, it is possible that you will see configuration and panic errors.

The build your first network (BYFN) scenario provisions a sample Hyperledger Fabric network consisting of two
organizations, each maintaining two peer nodes, and a “solo” ordering service.

6.2.1 Install prerequisites

Before we begin, if you haven’t already done so, you may wish to check that you have all the Prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

You will also need to Install Samples, Binaries and Docker Images. You will notice that there are a number of samples
included in the fabric-samples repository. We will be using the first-network sample. Let’s open that
sub-directory now.

cd fabric-samples/first-network

Note: The supplied commands in this documentation MUST be run from your first-network sub-directory of
the fabric—-samples repository clone. If you elect to run the commands from a different location, the various
provided scripts will be unable to find the binaries.

94 Chapter 6. Tutorials

https://github.com/hyperledger/fabric-sdk-node
https://chat.hyperledger.org/home

hyperledger-fabricdocs Documentation, Release master

6.2.2 Want to run it now?

We provide a fully annotated script - by fn. sh - that leverages these Docker images to quickly bootstrap a Hyper-
ledger Fabric network comprised of 4 peers representing two different organizations, and an orderer node. It will also
launch a container to run a scripted execution that will join peers to a channel, deploy and instantiate chaincode and
drive execution of transactions against the deployed chaincode.

Here’s the help text for the by fn. sh script:

Usage:
byfn.sh <mode> [-c <channel name>] [-t <timeout>] [-d <delay>] [-f <docker-compose-
—file>] [-s <dbtype>] [-1 <language>] [-1 <imagetag>] [-V]
<mode> - one of 'up', 'down', 'restart', 'generate' or 'upgrade'
- 'up' - bring up the network with docker-compose up
— 'down' - clear the network with docker-compose down
- 'restart' - restart the network
- 'generate' - generate required certificates and genesis block
- 'upgrade' - upgrade the network from vl1.0.x to vl.l
—c <channel name> - channel name to use (defaults to "mychannel™)
-t <timeout> - CLI timeout duration in seconds (defaults to 10)
-d <delay> - delay duration in seconds (defaults to 3)
-f <docker-compose-file> - specify which docker-compose file use (defaults to,

—docker-compose-cli.yaml)
—-s <dbtype> - the database backend to use: goleveldb (default) or couchdb
-1 <language> - the chaincode language: golang (default), node or java
-1 <imagetag> - the tag to be used to launch the network (defaults to "latest")
-v - verbose mode
byfn.sh -h (print this message)

Typically, one would first generate the required certificates and
genesis block, then bring up the network. e.g.:

byfn.sh generate -c mychannel

byfn.sh up -c¢ mychannel -s couchdb

byfn.sh up -c¢ mychannel -s couchdb -i 1.1.0-alpha
byfn.sh up -1 node

byfn.sh down -c¢ mychannel

byfn.sh upgrade —-c mychannel

Taking all defaults:
byfn.sh generate
byfn.sh up
byfn.sh down

If you choose not to supply a channel name, then the script will use a default name of mychannel. The CLI timeout
parameter (specified with the -t flag) is an optional value; if you choose not to set it, then the CLI will give up on query
requests made after the default setting of 10 seconds.

Generate Network Artifacts

Ready to give it a go? Okay then! Execute the following command:

./byfn.sh generate

You will see a brief description as to what will occur, along with a yes/no command line prompt. Respond with a y or
hit the return key to execute the described action.

6.2. Building Your First Network 95

hyperledger-fabricdocs Documentation, Release master

Generating certs and genesis block for channel 'mychannel' with CLI timeout of '10'
—seconds and CLI delay of '3' seconds

Continue? [Y/n] y

proceeding ...

/Users/xxx/dev/fabric-samples/bin/cryptogen

EE LSRR ST

####4 Generate certificates using cryptogen tool ########4#

FHEH AR

orgl.example.com

2017-06-12 21:01:37.334 EDT [bccsp] GetDefault —-> WARN 001 Before using BCCSP, please,_
—~call InitFactories (). Falling back to bootBCCSP.

/Users/xxx/dev/fabric-samples/bin/configtxgen
S i i i

###4#4#4#4 Generating Orderer Genesis block ##########4#4#

FHEHE AR H A R R R

2017-06-12 21:01:37.558 EDT [common/configtx/tool] main -> INFO 001 Loading,,
—configuration

2017-06-12 21:01:37.562 EDT [msp] getMspConfig —-> INFO 002 intermediate certs folder
—not found at [/Users/xxx/dev/byfn/crypto-config/ordererOrganizations/example.com/
—msp/intermediatecerts]. Skipping.: [stat /Users/xxx/dev/byfn/crypto-config/
—ordererOrganizations/example.com/msp/intermediatecerts: no such file or directory]

2017-06-12 21:01:37.588 EDT [common/configtx/tool] doOutputBlock —-> INFO 00b,,
—Generating genesis block

2017-06-12 21:01:37.590 EDT [common/configtx/tool] doOutputBlock -> INFO 00c Writing,,
—genesis block

B i i i

Generating channel configuration transaction 'channel.tx'

FHEH AR A R

2017-06-12 21:01:37.634 EDT [common/configtx/tool] main —-> INFO 001 Loading,,
—configuration

2017-06-12 21:01:37.644 EDT [common/configtx/tool] doOutputChannelCreateTx -> INFO_,
002 Generating new channel configtx

2017-06-12 21:01:37.645 EDT [common/configtx/tool] doOutputChannelCreateTx —-> INFO,_,
003 Writing new channel tx

B i i i

R EEE Generating anchor peer update for OrglMSP HHAfHHEHEAS
B i i i

2017-06-12 21:01:37.674 EDT [common/configtx/tool] main —-> INFO 001 Loading,,
—configuration

2017-06-12 21:01:37.678 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO_,
002 Generating anchor peer update

2017-06-12 21:01:37.679 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO_,
—003 Writing anchor peer update

FHE A A R R

LE T 2L T Generating anchor peer update for Org2MSP HHHHH S
B i i i

2017-06-12 21:01:37.700 EDT [common/configtx/tool] main -> INFO 001 Loading,,
—configuration

2017-06-12 21:01:37.704 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO,
002 Generating anchor peer update

(continues on next page)

96 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

2017-06-12 21:01:37.704 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO
—003 Writing anchor peer update

This first step generates all of the certificates and keys for our various network entities, the genesis block used
to bootstrap the ordering service, and a collection of configuration transactions required to configure a Channel.

Bring Up the Network

Next, you can bring the network up with one of the following commands:

./byfn.sh up

The above command will compile Golang chaincode images and spin up the corresponding containers. Go is the
default chaincode language, however there is also support for Node.js and Java chaincode. If you’d like to run through
this tutorial with node chaincode, pass the following command instead:

we use the -1 flag to specify the chaincode language
forgoing the -1 flag will default to Golang

./byfn.sh up -1 node

Note: For more information on the Node.js shim, please refer to its documentation.

Note: For more information on the Java shim, please refer to its documentation.

o make the sample run with Java chaincode, you have to specify -1 java as follows:

./byfn.sh up -1 java

Note: Do not run both of these commands. Only one language can be tried unless you bring down and recreate the
network between.

Once again, you will be prompted as to whether you wish to continue or abort. Respond with a y or hit the return key:

Starting for channel 'mychannel' with CLI timeout of '1l0' seconds and CLI delay of '3
— ' seconds

Continue? [Y/n]

proceeding

Creating network "net_byfn" with the default driver
Creating peer0.orgl.example.com

Creating peerl.orgl.example.com

Creating peer0.org2.example.com

Creating orderer.example.com

Creating peerl.org2.example.com

Creating cli

(continues on next page)

6.2. Building Your First Network 97

https://fabric-shim.github.io/
https://fabric-chaincode-java.github.io/
https://fabric-shim.github.io/fabric-shim.ChaincodeInterface.html
https://fabric-chaincode-java.github.io/org/hyperledger/fabric/shim/Chaincode.html

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

Channel name : mychannel
Creating channel...

The logs will continue from there. This will launch all of the containers, and then drive a complete end-to-end
application scenario. Upon successful completion, it should report the following in your terminal window:

Query Result: 90
2017-05-16 17:08:15.158 UTC [main] main —-> INFO 008 Exiting.....
Query successful on peerl.org2 on channel 'mychannel' |

===================== All GOOD, BYFN execution completed =====================

You can scroll through these logs to see the various transactions. If you don’t get this result, then jump down to the
Troubleshooting section and let’s see whether we can help you discover what went wrong.

Bring Down the Network

Finally, let’s bring it all down so we can explore the network setup one step at a time. The following will kill your
containers, remove the crypto material and four artifacts, and delete the chaincode images from your Docker Registry:

./byfn.sh down

Once again, you will be prompted to continue, respond with a y or hit the return key:

Stopping with channel 'mychannel' and CLI timeout of '10'

Continue? [Y/n] y

proceeding

WARNING: The CHANNEL_NAME variable is not set. Defaulting to a blank string.
WARNING: The TIMEOUT variable is not set. Defaulting to a blank string.
Removing network net_byfn

468aaab620led

Untagged: dev-peerl.org2.example.com—mycc—-1.0:latest
Deleted: sha256:ed3230614e64e1c83e510c0c282e982d2b06d148blc498bbdcc429%e2b2531e91

If you’d like to learn more about the underlying tooling and bootstrap mechanics, continue reading. In these next
sections we’ll walk through the various steps and requirements to build a fully-functional Hyperledger Fabric network.

Note: The manual steps outlined below assume that the CORE_LOGGING_LEVEL in the c1i container is set to
DEBUG. You can set this by modifying the docker—compose—-cli.yaml file in the first-network directory.

e.g.

98 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

cli:

container_name: cli

image: hyperledger/fabric-tools:$IMAGE_TAG

tty: true

stdin_open: true

environment:
- GOPATH=/opt/gopath
— CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
— CORE_LOGGING_LEVEL=DEBUG
#— CORE_LOGGING_LEVEL=INFO

6.2.3 Crypto Generator

We will use the cryptogen tool to generate the cryptographic material (x509 certs and signing keys) for our various
network entities. These certificates are representative of identities, and they allow for sign/verify authentication to take
place as our entities communicate and transact.

How does it work?

Cryptogen consumes a file - crypto-config.yaml - that contains the network topology and allows us to generate
a set of certificates and keys for both the Organizations and the components that belong to those Organizations. Each
Organization is provisioned a unique root certificate (ca—cert) that binds specific components (peers and orderers)
to that Org. By assigning each Organization a unique CA certificate, we are mimicking a typical network where a
participating Member would use its own Certificate Authority. Transactions and communications within Hyperledger
Fabric are signed by an entity’s private key (keystore), and then verified by means of a public key (signcerts).

You will notice a count variable within this file. We use this to specify the number of peers per Organization; in our
case there are two peers per Org. We won’t delve into the minutiae of x.509 certificates and public key infrastructure
right now. If you’re interested, you can peruse these topics on your own time.

Before running the tool, let’s take a quick look at a snippet from the crypto-config.yaml. Pay specific attention
to the “Name”, “Domain” and “Specs” parameters under the OrdererOrgs header:

OrdererOrgs:

— Name: Orderer
Domain: example.com
CA:
Country: US
Province: California
Locality: San Francisco
OrganizationalUnit: Hyperledger Fabric
StreetAddress: address for org # default nil
PostalCode: postalCode for org # default nil

,,
"Specs" - See PeerOrgs below for complete description
,,,
Specs:
- Hostname: orderer
,,,
"PeerOrgs" - Definition of organizations managing peer nodes

(continues on next page)

6.2. Building Your First Network 99

https://en.wikipedia.org/wiki/Public_key_infrastructure

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

— Name: Orgl
Domain: orgl.example.com
EnableNodeOUs: true

The naming convention for a network entity is as follows - “{{.Hostname}}.{{.Domain}}”. So using our ordering
node as a reference point, we are left with an ordering node named - orderer.example. com that is tied to an
MSP ID of Orderer. This file contains extensive documentation on the definitions and syntax. You can also refer to
the Membership Service Providers (MSP) documentation for a deeper dive on MSP.

After we run the cryptogen tool, the generated certificates and keys will be saved to a folder titled
crypto-config.

6.2.4 Configuration Transaction Generator

The configtxgen tool is used to create four configuration artifacts:

* orderer genesis block,

e channel configuration transaction,

e and two anchor peer transactions - one for each Peer Org.
Please see configtxgen for a complete description of this tool’s functionality.

The orderer block is the Genesis Block for the ordering service, and the channel configuration transaction file is
broadcast to the orderer at Channel creation time. The anchor peer transactions, as the name might suggest, specify
each Org’s Anchor Peer on this channel.

How does it work?

Configtxgen consumes a file - configtx.yaml - that contains the definitions for the sample network. There are
three members - one Orderer Org (OrdererOrg) and two Peer Orgs (Orgl & Org2) each managing and maintaining
two peer nodes. This file also specifies a consortium - SampleConsortium - consisting of our two Peer Orgs. Pay
specific attention to the “Profiles” section at the top of this file. You will notice that we have two unique headers. One
for the orderer genesis block - TwoOrgsOrdererGenesis - and one for our channel - TwoOrgsChannel.

These headers are important, as we will pass them in as arguments when we create our artifacts.

Note: Notice that our SampleConsortium is defined in the system-level profile and then referenced by our
channel-level profile. Channels exist within the purview of a consortium, and all consortia must be defined in the
scope of the network at large.

This file also contains two additional specifications that are worth noting. Firstly, we specify the anchor peers for each
Peer Org (peer0.orgl.example.com & peer(0.org2.example.com). Secondly, we point to the location
of the MSP directory for each member, in turn allowing us to store the root certificates for each Org in the orderer
genesis block. This is a critical concept. Now any network entity communicating with the ordering service can have
its digital signature verified.

100 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

6.2.5 Run the tools

You can manually generate the certificates/keys and the various configuration artifacts using the configtxgen and
cryptogen commands. Alternately, you could try to adapt the byfn.sh script to accomplish your objectives.

Manually generate the artifacts

You can refer to the generateCerts function in the byfn.sh script for the commands necessary to generate the
certificates that will be used for your network configuration as defined in the crypto-config.yaml file. However,
for the sake of convenience, we will also provide a reference here.

First let’s run the cryptogen tool. Our binary is in the bin directory, so we need to provide the relative path to
where the tool resides.

../bin/cryptogen generate —--config=./crypto-config.yaml

You should see the following in your terminal:

orgl.example.com
org2.example.com

The certs and keys (i.e. the MSP material) will be output into a directory - crypto-config - at the root of the
first-network directory.

Next, we need to tell the configtxgen tool where to look for the configtx.yaml file that it needs to ingest. We
will tell it look in our present working directory:

export FABRIC_CFG_PATH=S$PWD

Then, we’ll invoke the configtxgen tool to create the orderer genesis block:

../bin/configtxgen -profile TwoOrgsOrdererGenesis -outputBlock ./channel-artifacts/
—genesis.block

You should see an output similar to the following in your terminal:

2017-10-26 19:21:56.301 EDT [common/tools/configtxgen] main —-> INFO 001 Loading,,

—configuration

2017-10-26 19:21:56.309 EDT [common/tools/configtxgen] doOutputBlock —-> INFO 002
—Generating genesis block

2017-10-26 19:21:56.309 EDT [common/tools/configtxgen] doOutputBlock -> INFO 003
—Writing genesis block

Note: The orderer genesis block and the subsequent artifacts we are about to create will be output into the
channel-artifacts directory at the root of this project.

Create a Channel Configuration Transaction

Next, we need to create the channel transaction artifact. Be sure to replace SCHANNEL_NAME or set CHANNEL_ NAME
as an environment variable that can be used throughout these instructions:

6.2. Building Your First Network 101

hyperledger-fabricdocs Documentation, Release master

The channel.tx artifact contains the definitions for our sample channel

export CHANNEL_NAME=mychannel && ../bin/configtxgen -profile TwoOrgsChannel -
—outputCreateChannelTx ./channel-artifacts/channel.tx —-channelID $CHANNEL_NAME

You should see an output similar to the following in your terminal:

2017-10-26 19:24:05.324 EDT [common/tools/configtxgen] main -> INFO 001 Loading,,
—configuration

2017-10-26 19:24:05.329 EDT [common/tools/configtxgen] doOutputChannelCreateTx —>
—INFO 002 Generating new channel configtx

2017-10-26 19:24:05.329 EDT [common/tools/configtxgen] doOutputChannelCreateTx —>_,
—INFO 003 Writing new channel tx

Next, we will define the anchor peer for Orgl on the channel that we are constructing. Again, be sure to replace
SCHANNEL_NAME or set the environment variable for the following commands. The terminal output will mimic that
of the channel transaction artifact:

../bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-
—artifacts/OrglMSPanchors.tx —-channelID $CHANNEL_NAME -asOrg OrglMSP

Now, we will define the anchor peer for Org2 on the same channel:

../bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-
—artifacts/Org2MSPanchors.tx —-channelID $CHANNEL_NAME -asOrg Org2MSP

6.2.6 Start the network

Note: If youran the byfn.sh example above previously, be sure that you have brought down the test network before
you proceed (see Bring Down the Network).

We will leverage a script to spin up our network. The docker-compose file references the images that we have previ-
ously downloaded, and bootstraps the orderer with our previously generated genesis.block.

We want to go through the commands manually in order to expose the syntax and functionality of each call.

First let’s start our network:

docker-compose —-f docker-compose-cli.yaml up -d

If you want to see the realtime logs for your network, then do not supply the —d flag. If you let the logs stream, then
you will need to open a second terminal to execute the CLI calls.

Environment variables

For the following CLI commands against peer0.orgl.example.com to work, we need to preface our commands
with the four environment variables given below. These variables for peer0.orgl.example.com are baked into
the CLI container, therefore we can operate without passing them. HOWEVER, if you want to send calls to other
peers or the orderer, then you can provide these values accordingly by editing the docker—-compose-base.yaml
before starting the container. Modify the following four environment variables to use a different peer and org.

102 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

Environment variables for PEERO

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—peerOrganizations/orgl.example.com/users/Admin@orgl.example.com/msp
CORE_PEER_ADDRESS=peer(0.orgl.example.com: 7051

CORE_PEER_LOCALMSPID="OrglMSP"
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—peerOrganizations/orgl.example.com/peers/peer(0.orgl.example.com/tls/ca.crt

Create & Join Channel

Recall that we created the channel configuration transaction using the configtxgen tool in the Create a Channel
Configuration Transaction section, above. You can repeat that process to create additional channel configuration
transactions, using the same or different profiles in the configtx.yaml that you pass to the configtxgen tool.
Then you can repeat the process defined in this section to establish those other channels in your network.

We will enter the CLI container using the docker exec command:

’docker exec —it cli bash

If successful you should see the following:

’root@0d78bb69300d:/opt/gopath/src/github.com/hyperledger/fabric/peer#

If you do not want to run the CLI commands against the default peer peer0.orgl.example.com, replace the
values of peer0 or orgl in the four environment variables and run the commands:

Environment variables for PEERO

export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/
—crypto/peerOrganizations/orgl.example.com/users/Admin@orgl.example.com/msp

export CORE_PEER_ADDRESS=peer(.orgl.example.com:7051

export CORE_PEER_LOCALMSPID="OrglMSP"

export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/
—crypto/peerOrganizations/orgl.example.com/peers/peer0.orgl.example.com/tls/ca.crt

Next, we are going to pass in the generated channel configuration transaction artifact that we created in the Create a
Channel Configuration Transaction section (we called it channel. tx) to the orderer as part of the create channel
request.

We specify our channel name with the —c flag and our channel configuration transaction with the —f flag. In this case
itis channel . tx, however you can mount your own configuration transaction with a different name. Once again we
will set the CHANNEL_NAME environment variable within our CLI container so that we don’t have to explicitly pass
this argument. Channel names must be all lower case, less than 250 characters long and match the regular expression
[a—z] [a—z0-9.-] *.

export CHANNEL_NAME=mychannel

the channel.tx file is mounted in the channel-artifacts directory within your CLI_|
—container

as a result, we pass the full path for the file

we also pass the path for the orderer ca-cert in order to verify the TLS handshake
be sure to export or replace the $CHANNEL_NAME variable appropriately

peer channel create -o orderer.example.com:7050 —c S$CHANNEL_NAME -f ./channel-
—artifacts/channel.tx —--tls —--cafile /opt/gopath/src/github.com/hyperledger/fabric/

—peer/crypto/ordererOrganizations/example.com/orderers/orderer.example . camfimspgn next page)
—tlscacerts/tlsca.example.com-cert.pem

6.2. Building Your First Network 103

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

|

Note: Notice the ——cafile that we pass as part of this command. It is the local path to the orderer’s root cert,
allowing us to verify the TLS handshake.

This command returns a genesis block - <CHANNEL-NAME .block> - which we will use to join the channel. It
contains the configuration information specified in channel.tx If you have not made any modifications to the
default channel name, then the command will return you a proto titled mychannel .block.

Note: You will remain in the CLI container for the remainder of these manual commands. You must also remember to
preface all commands with the corresponding environment variables when targeting a peer other than peer0.orgl.
example.com.

Now let’s join peer0.orgl.example.com to the channel.

By default, this joins "~ “peer(0.orgl.example.com = only

the <CHANNEL-NAME.block> was returned by the previous command

1f you have not modified the channel name, you will join with mychannel.block

1f you have created a different channel name, then pass in the appropriately named_,
—block

peer channel join -b mychannel.block

You can make other peers join the channel as necessary by making appropriate changes in the four environment
variables we used in the Environment variables section, above.

Rather than join every peer, we will simply join peer0.org2.example. com so that we can properly update the
anchor peer definitions in our channel. Since we are overriding the default environment variables baked into the CLI
container, this full command will be the following:

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp CORE_PEER_
—ADDRESS=peer(0.org2.example.com: 7051 CORE_PEER_LOCALMSPID="0rg2MSP" CORE_PEER_TLS_
—ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt peer
—channel join -b mychannel.block

Alternatively, you could choose to set these environment variables individually rather than passing in the entire string.
Once they’ve been set, you simply need to issue the peer channel join command again and the CLI container
will act on behalf of peer0.org2.example.comn.

Update the anchor peers

The following commands are channel updates and they will propagate to the definition of the channel. In essence, we
adding additional configuration information on top of the channel’s genesis block. Note that we are not modifying the
genesis block, but simply adding deltas into the chain that will define the anchor peers.

Update the channel definition to define the anchor peer for Orgl as peer0.orgl.example.com:

peer channel update -o orderer.example.com:7050 —c S$CHANNEL_NAME -f ./channel-
—artifacts/OrglMSPanchors.tx —-tls --cafile /opt/gopath/src/github.com/hyperledger/
—fabric/peer/crypto/ordererOrganizations/example.com/orderers/orderer.example.com/
—msp/tlscacerts/tlsca.example.com-cert.pem

104 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

Now update the channel definition to define the anchor peer for Org2 as peer0.org2.example . com. Identically
to the peer channel Jjoin command for the Org2 peer, we will need to preface this call with the appropriate
environment variables.

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—peerOrganizations/org2.example.com/users/AdminQorg2.example.com/msp CORE_PEER_
—ADDRESS=peer(0.org2.example.com: 7051 CORE_PEER_LOCALMSPID="0Org2MSP" CORE_PEER_TLS_
—ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt peer,
—channel update -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-artifacts/
—0rg2MSPanchors.tx --tls —--cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/
—crypto/ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/
—~tlsca.example.com—cert.pem

Install & Instantiate Chaincode

Note: We will utilize a simple existing chaincode. To learn how to write your own chaincode, see the Chaincode for
Developers tutorial.

Applications interact with the blockchain ledger through chaincode. As such we need to install the chaincode on
every peer that will execute and endorse our transactions, and then instantiate the chaincode on the channel.

First, install the sample Go, Node.js or Java chaincode onto one of the four peer nodes. These commands place the
specified source code flavor onto our peer’s filesystem.

Note: You can only install one version of the source code per chaincode name and version. The source code exists on
the peer’s file system in the context of chaincode name and version; it is language agnostic. Similarly the instantiated
chaincode container will be reflective of whichever language has been installed on the peer.

Golang

this installs the Go chaincode
peer chaincode install -n mycc -v 1.0 -p github.com/chaincode/chaincode_example02/go/

Node.js

this installs the Node.js chaincode

make note of the -1 flag; we use this to specify the language

peer chaincode install -n mycc -v 1.0 -1 node -p /opt/gopath/src/github.com/chaincode/
—chaincode_example02/node/

Java

peer chaincode install -n mycc -v 1.0 -1 java -p /opt/gopath/src/github.com/chaincode/
—chaincode_example02/java/

Next, instantiate the chaincode on the channel. This will initialize the chaincode on the channel, set the endorsement
policy for the chaincode, and launch a chaincode container for the targeted peer. Take note of the —P argument. This is
our policy where we specify the required level of endorsement for a transaction against this chaincode to be validated.

In the command below you’ll notice that we specify our policy as -P "AND ('OrglMSP.peer', 'Org2MSP.
peer ') ". This means that we need “endorsement” from a peer belonging to Orgl AND Org?2 (i.e. two endorsement).
If we changed the syntax to OR then we would need only one endorsement.

6.2. Building Your First Network 105

hyperledger-fabricdocs Documentation, Release master

Golang

be sure to replace the S$CHANNEL_NAME environment variable if you have not exported
if you did not install your chaincode with a name of mycc, then modify that,,
—argument as well

peer chaincode instantiate -o orderer.example.com:7050 —--tls --cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n_,
—mycc -v 1.0 -c¢ '{"Args":["init","a", "100", "b","200"]}' -P "AND ('OrglMSP.peer',
—'0Org2MSP.peer ') "

Node.js

Note: The instantiation of the Node.js chaincode will take roughly a minute. The command is not hanging; rather it
is installing the fabric-shim layer as the image is being compiled.

be sure to replace the $CHANNEL_NAME environment variable if you have not exported
i1f you did not install your chaincode with a name of mycc, then modify that,,
—argument as well

notice that we must pass the -1 flag after the chaincode name to identify the
—language

peer chaincode instantiate -o orderer.example.com:7050 —--tls --cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com—-cert.pem -C S$SCHANNEL_NAME -n_,
—mycc -1 node -v 1.0 -c¢ '{"Args":["init","a", "100", "b","200"]}' -P "AND ('OrglMSP.
—peer', 'Org2MSP.peer') "

Java

Note: Please note, Java chaincode instantiation might take time as it compiles chaincode and downloads docker
container with java environment.

peer chaincode instantiate -o orderer.example.com:7050 --tls —--cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n_,
—mycc -1 java -v 1.0 -c¢ '{"Args":["init","a", "100", "b","200"]}' -P "AND ('OrglMSP.
—peer', 'Org2MSP.peer') "

See the endorsement policies documentation for more details on policy implementation.

If you want additional peers to interact with ledger, then you will need to join them to the channel, and install the same
name, version and language of the chaincode source onto the appropriate peer’s filesystem. A chaincode container
will be launched for each peer as soon as they try to interact with that specific chaincode. Again, be cognizant of the
fact that the Node.js images will be slower to compile.

Once the chaincode has been instantiated on the channel, we can forgo the 1 flag. We need only pass in the channel
identifier and name of the chaincode.

106 Chapter 6. Tutorials

http://hyperledger-fabric.readthedocs.io/en/latest/endorsement-policies.html

hyperledger-fabricdocs Documentation, Release master

Query

Let’s query for the value of a to make sure the chaincode was properly instantiated and the state DB was populated.
The syntax for query is as follows:

be sure to set the -C and -n flags appropriately

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

Invoke

Now let’s move 10 from a to b. This transaction will cut a new block and update the state DB. The syntax for invoke
is as follows:

be sure to set the -C and -n flags appropriately

peer chaincode invoke -o orderer.example.com:7050 --tls true --cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n_,
—mycc —-peerAddresses peer(0.orgl.example.com:7051 —--tlsRootCertFiles /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/peerOrganizations/orgl.example.com/peers/
—peer0.orgl.example.com/tls/ca.crt —--peerAddresses peer(0.org2.example.com:7051 —-—
—tlsRootCertFiles /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—peerOrganizations/org2.example.com/peers/peer0.org2.example.com/tls/ca.crt —-c '{
—"Args": ["invoke","a","b","10"] }"'

Query

Let’s confirm that our previous invocation executed properly. We initialized the key a with a value of 100 and just
removed 10 with our previous invocation. Therefore, a query against a should reveal 90. The syntax for query is as
follows.

be sure to set the -C and -n flags appropriately

peer chaincode query —-C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

We should see the following:

Query Result: 90

Feel free to start over and manipulate the key value pairs and subsequent invocations.

What’s happening behind the scenes?

Note: These steps describe the scenario in which script. sh is run by ‘./byfn.sh up’. Clean your network with
./byfn.sh down and ensure this command is active. Then use the same docker-compose prompt to launch your
network again

e A script- script.sh - is baked inside the CLI container. The script drives the createChannel command
against the supplied channel name and uses the channel.tx file for channel configuration.

6.2. Building Your First Network 107

hyperledger-fabricdocs Documentation, Release master

The output of createChannel is a genesis block - <your_channel_name>.block - which gets stored
on the peers’ file systems and contains the channel configuration specified from channel.tx.

The joinChannel command is exercised for all four peers, which takes as input the previously generated
genesis block. This command instructs the peers to join <your_channel_ name> and create a chain starting
with <your_channel_name>.block.

Now we have a channel consisting of four peers, and two organizations. This is our TwoOrgsChannel profile.

peer0.orgl.example.com and peerl.orgl.example.com belong to Orgl; peerO.org2.
example.comand peerl.org2.example.com belong to Org2

These relationships are defined through the crypto-config.yaml and the MSP path is specified in our
docker compose.

The anchor peers for OrgIMSP (peer0.orgl.example.com) and Org2MSP (peer0.org2.example.
com) are then updated. We do this by passing the OrglMSPanchors.tx and Org2MSPanchors.tx
artifacts to the ordering service along with the name of our channel.

A chaincode - chaincode_example(2 - is installed on peer0.orgl.example.com and peer0.org2.
example.com

The chaincode is then “instantiated” on peer0.org2.example . com. Instantiation adds the chaincode to the
channel, starts the container for the target peer, and initializes the key value pairs associated with the chaincode.
The initial values for this example are [“a”,”100” “b”,’200]. This “instantiation” results in a container by the
name of dev-peer0.org2.example.com-mycc—1. 0 starting.

The instantiation also passes in an argument for the endorsement policy. The policy is defined as -P "AND
('OrglMSP.peer', 'Org2MSP.peer') ", meaning that any transaction must be endorsed by a peer tied
to Orgl and Org2.

A query against the value of “a” is issued to peer0.orgl.example.com. The chaincode was previously
installed on peer0.orgl.example.com, so this will start a container for Orgl peer0 by the name of
dev-peer0.orgl.example.com-mycc—1.0. The result of the query is also returned. No write op-
erations have occurred, so a query against “a” will still return a value of “100”.

An invoke is sent to peer0.orgl.example.com to move “10” from “a” to “b”
The chaincode is then installed on peerl .org2.example.com

A query is sent to peerl.org2.example.com for the value of “a”. This starts a third chaincode con-
tainer by the name of dev-peerl.org2.example.com-mycc—1.0. A value of 90 is returned, correctly
reflecting the previous transaction during which the value for key “a” was modified by 10.

What does this demonstrate?

Chaincode MUST be installed on a peer in order for it to successfully perform read/write operations against the ledger.
Furthermore, a chaincode container is not started for a peer until an init or traditional transaction - read/write - is
performed against that chaincode (e.g. query for the value of “a”). The transaction causes the container to start. Also,
all peers in a channel maintain an exact copy of the ledger which comprises the blockchain to store the immutable,
sequenced record in blocks, as well as a state database to maintain a snapshot of the current state. This includes
those peers that do not have chaincode installed on them (like peerl.orgl.example. com in the above example)
. Finally, the chaincode is accessible after it is installed (like peerl.org2.example. com in the above example)
because it has already been instantiated.

How do | see these transactions?

Check the logs for the CLI Docker container.

108

Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

docker logs —-f cli

You should see the following output:

2017-05-16 17:08:01.366 UTC [msp] GetLocalMSP -> DEBU 004 Returning existing local MSP
2017-05-16 17:08:01.366 UTC [msp] GetDefaultSigningIdentity -> DEBU 005 Obtaining
—default signing identity

2017-05-16 17:08:01.366 UTIC [msp/identity] Sign -> DEBU 006 Sign: plaintext:
—~0AB1070A6708031A0C08F1E3ECC80510...6D7963631A0A0A0571756572790A0161

2017-05-16 17:08:01.367 UTIC [msp/identity] Sign -> DEBU 007 Sign: digest:
—E61DB37F4E8BOD32COFE10E3936BA9B8CD278FAALIF3320B08712164248285C54

Query Result: 90

2017-05-16 17:08:15.158 UTC [main] main -> INFO 008 Exiting.....

===================== Query successful on peerl.org2 on channel 'mychannel'

You can scroll through these logs to see the various transactions.

How can | see the chaincode logs?

Inspect the individual chaincode containers to see the separate transactions executed against each container. Here is
the combined output from each container:

$ docker logs dev-peer0.org2.example.com-mycc—-1.0
04:30:45.947 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Init

Aval = 100, Bval = 200

$ docker logs dev-peer0.orgl.example.com-mycc—1.0
04:31:10.569 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Invoke

Query Response:{"Name":"a", "Amount":"100"}

ex02 Invoke

Aval = 90, Bval = 210

$ docker logs dev-peerl.org2.example.com-mycc-1.0
04:31:30.420 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Invoke

Query Response:{"Name":"a", "Amount":"90"}

6.2.7 Understanding the Docker Compose topology

The BYFN sample offers us two flavors of Docker Compose files, both of which are extended from the
docker-compose-base.yaml (located in the base folder). Our first flavor, docker—-compose-cli.yaml,
provides us with a CLI container, along with an orderer, four peers. We use this file for the entirety of the instructions
on this page.

6.2. Building Your First Network 109

hyperledger-fabricdocs Documentation, Release master

Note: the remainder of this section covers a docker-compose file designed for the SDK. Refer to the Node SDK repo
for details on running these tests.

The second flavor, docker—-compose-e2e.yaml, is constructed to run end-to-end tests using the Node.js SDK.
Aside from functioning with the SDK, its primary differentiation is that there are containers for the fabric-ca servers.
As a result, we are able to send REST calls to the organizational CAs for user registration and enrollment.

If you want to use the docker—compose-e2e.yaml without first running the byfn.sh script, then we will need
to make four slight modifications. We need to point to the private keys for our Organization’s CA’s. You can locate
these values in your crypto-config folder. For example, to locate the private key for Orgl we would follow this path
- crypto-config/peerOrganizations/orgl.example.com/ca/. The private key is a long hash value
followed by _sk. The path for Org2 would be - crypto-config/peerOrganizations/org2.example.
com/ca/.

In the docker-compose-e2e.yaml update the FABRIC_CA_SERVER_TLS_KEYFILE variable for ca0 and
cal. You also need to edit the path that is provided in the command to start the ca server. You are providing the same
private key twice for each CA container.

6.2.8 Using CouchDB

The state database can be switched from the default (goleveldb) to CouchDB. The same chaincode functions are
available with CouchDB, however, there is the added ability to perform rich and complex queries against the state
database data content contingent upon the chaincode data being modeled as JSON.

To use CouchDB instead of the default database (goleveldb), follow the same procedures outlined earlier for generating
the artifacts, except when starting the network pass docker—-compose-couch.yaml as well:

docker-compose -f docker-compose-cli.yaml —-f docker-compose-couch.yaml up -d

chaincode_example02 should now work using CouchDB underneath.

Note: If you choose to implement mapping of the fabric-couchdb container port to a host port, please make sure you
are aware of the security implications. Mapping of the port in a development environment makes the CouchDB REST
API available, and allows the visualization of the database via the CouchDB web interface (Fauxton). Production
environments would likely refrain from implementing port mapping in order to restrict outside access to the CouchDB
containers.

You can use chaincode_example02 chaincode against the CouchDB state database using the steps outlined above,
however in order to exercise the CouchDB query capabilities you will need to use a chaincode that has data modeled
as JSON, (e.g. marbles02). You can locate the marbles02 chaincode in the fabric/examples/chaincode/go
directory.

We will follow the same process to create and join the channel as outlined in the Create & Join Channel section above.
Once you have joined your peer(s) to the channel, use the following steps to interact with the marbles02 chaincode:

« Install and instantiate the chaincode on peer0.orgl.example.com:

be sure to modify the $CHANNEL_NAME variable accordingly for the instantiate command

peer chaincode install -n marbles -v 1.0 -p github.com/chaincode/marbles02/go

peer chaincode instantiate -o orderer.example.com:7050 —--tls --cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C S$SCHANNEL_NAME -n_,
—marbles -v 1.0 -c '"{"Args":["init"]}' -P "OR ('OrgOMSP.peer', 'OrglMSP.peer')"

110 Chapter 6. Tutorials

https://github.com/hyperledger/fabric-sdk-node

hyperledger-fabricdocs Documentation, Release master

¢ Create some marbles and move them around:

be sure to modify the $CHANNEL_NAME variable accordingly

peer chaincode invoke -o orderer.example.com:7050 —--tls --cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com—cert.pem —-C SCHANNEL_NAME -n_,
—marbles —-c '{"Args":["initMarble", "marblel", "blue","35", "tom"]}"

peer chaincode invoke -o orderer.example.com:7050 --tls —--cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C S$SCHANNEL_NAME -n_,
—marbles -c '{"Args":["initMarble", "marble2", "red","50", "tom"]}"'

peer chaincode invoke -o orderer.example.com:7050 —-tls --cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem -C $CHANNEL_NAME -n_,
—marbles —-c '{"Args":["initMarble", "marble3","blue","70","tom"]}"'

peer chaincode invoke -o orderer.example.com:7050 —-tls --cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com—-cert.pem -C SCHANNEL_NAME -n_,
—marbles —-c '{"Args":["transferMarble", "marble2","jerry"]}'

peer chaincode invoke -o orderer.example.com:7050 --tls —--cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem —-C $CHANNEL_NAME -n_,
—marbles —-c '{"Args":["transferMarblesBasedOnColor", "blue","Jjerry"]}"'

peer chaincode invoke -o orderer.example.com:7050 —-tls --cafile /opt/gopath/src/
—github.com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
—orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem —-C $CHANNEL_NAME -n_
—marbles —-c '{"Args":["delete", "marblel"]}'

¢ If you chose to map the CouchDB ports in docker-compose, you can now view the state database through the
CouchDB web interface (Fauxton) by opening a browser and navigating to the following URL:

http://localhost:5984/_utils

You should see a database named mychannel (or your unique channel name) and the documents inside it.

Note: For the below commands, be sure to update the SCHANNEL_NAME variable appropriately.

You can run regular queries from the CLI (e.g. reading marble?2):

peer chaincode query —-C $CHANNEL_NAME -n marbles -c '{"Args":["readMarble", "marble2"]}

'
—

The output should display the details of marble?2:

Query Result: {"color":"red","docType":"marble", "name":"marble2", "owner":"jerry", "size
—":50}

You can retrieve the history of a specific marble - e.g. marblel:

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["getHistoryForMarble",
—"marblel"]}"'

The output should display the transactions on marblel:

Query Result: [{"TxId":
—"1c3d3cafl124c89f91a4c0£353723ac736¢c58155325f02890adebaalb5elbe6464", "Value":

"docType":"marble", "name" :"marblel", "color":"blue" "size":35, "owner": "t mt" }1,{"T tId)
continues on next pa
L ":"7550550281889%eacebfa05586F9625d71d36eb3d35420aF833a20a2£53a3eefd", Wrnlirey on et page
—"docType":"marble", "name" : "marblel", "color":"blue","size":35, "owner":"jerry"}}, {

&QZTIBTlﬁ'di"ﬁE&%m@ﬁﬁ§§W7f85e56a8 9262555e04f14788ee33e28b232eef36d98f", "Value"1-i1
]

hyperledger-fabricdocs Documentation, Release master

(continued from previous page)

|

You can also perform rich queries on the data content, such as querying marble fields by owner jerry:

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarblesByOwner",
"w2 n Al
—"Jerry"]}

The output should display the two marbles owned by jerry:

Query Result: [{"Key":"marble2", "Record":{"color":"red","docType":"marble", "name":
—"marble2", "owner":"jerry", "size":50}}, {"Key":"marble3", "Record":{"color":"blue",
—"docType":"marble", "name" : "marble3", "owner":"jerry", "size":70}}]

6.2.9 Why CouchDB

CouchDB is a kind of NoSQL solution. It is a document-oriented database where document fields are stored as
key-value maps. Fields can be either a simple key-value pair, list, or map. In addition to keyed/composite-key/key-
range queries which are supported by LevelDB, CouchDB also supports full data rich queries capability, such as non-
key queries against the whole blockchain data, since its data content is stored in JSON format and fully queryable.
Therefore, CouchDB can meet chaincode, auditing, reporting requirements for many use cases that not supported by
LevelDB.

CouchDB can also enhance the security for compliance and data protection in the blockchain. As it is able to im-
plement field-level security through the filtering and masking of individual attributes within a transaction, and only
authorizing the read-only permission if needed.

In addition, CouchDB falls into the AP-type (Availability and Partition Tolerance) of the CAP theorem. It uses a
master-master replication model with Eventual Consistency. More information can be found on the Eventual
Consistency page of the CouchDB documentation. However, under each fabric peer, there is no database replicas,
writes to database are guaranteed consistent and durable (not Eventual Consistency).

CouchDB is the first external pluggable state database for Fabric, and there could and should be other external database
options. For example, IBM enables the relational database for its blockchain. And the CP-type (Consistency and
Partition Tolerance) databases may also in need, so as to enable data consistency without application level guarantee.

6.2.10 A Note on Data Persistence

If data persistence is desired on the peer container or the CouchDB container, one option is to mount a directory in the
docker-host into a relevant directory in the container. For example, you may add the following two lines in the peer
container specification in the docker-compose-base.yamnl file:

volumes:
- /var/hyperledger/peer0:/var/hyperledger/production

For the CouchDB container, you may add the following two lines in the CouchDB container specification:

volumes:
- /var/hyperledger/couchdb0:/opt/couchdb/data

6.2.11 Troubleshooting

* Always start your network fresh. Use the following command to remove artifacts, crypto, containers and chain-
code images:

112 Chapter 6. Tutorials

http://docs.couchdb.org/en/latest/intro/consistency.html
http://docs.couchdb.org/en/latest/intro/consistency.html

hyperledger-fabricdocs Documentation, Release master

./byfn.sh down

Note: You will see errors if you do not remove old containers and images.

* If you see Docker errors, first check your docker version (Prerequisites), and then try restarting your Docker
process. Problems with Docker are oftentimes not immediately recognizable. For example, you may see errors
resulting from an inability to access crypto material mounted within a container.

If they persist remove your images and start from scratch:

docker rm -f $(docker ps -aq)
docker rmi -f $(docker images -q)

* If you see errors on your create, instantiate, invoke or query commands, make sure you have properly updated
the channel name and chaincode name. There are placeholder values in the supplied sample commands.

* If you see the below error:

Error: Error endorsing chaincode: rpc error: code = 2 desc = Error installing
—chaincode code mycc:1.0 (chaincode /var/hyperledger/production/chaincodes/mycc.1.
0 exits)

You likely have chaincode images (e.g. dev—peerl.org2.example.com-mycc—1.0 or dev-peer(.
orgl.example.com-mycc—1.0) from prior runs. Remove them and try again.

docker rmi —-f $(docker images | grep peer[0-9]-peer[0-9] | awk '{print $3}'")

* If you see something similar to the following:

Error connecting: rpc error: code = 14 desc = grpc: RPC failed fast due to,
—transport failure
Error: rpc error: code = 14 desc = grpc: RPC failed fast due to transport failure

Make sure you are running your network against the “1.0.0” images that have been retagged as “latest”.

* If you see the below error:

[configtx/tool/localconfig] Load -> CRIT 002 Error reading configuration:
—Unsupported Config Type ""
panic: Error reading configuration: Unsupported Config Type

nn

Then you did not set the FABRIC_CFG_PATH environment variable properly. The configtxgen tool needs this
variable in order to locate the configtx.yaml. Go back and execute an export FABRIC_CFG_PATH=$PWD,
then recreate your channel artifacts.

* To cleanup the network, use the down option:

’./byfn.sh down

« If you see an error stating that you still have “active endpoints”, then prune your Docker networks. This will
wipe your previous networks and start you with a fresh environment:

’docker network prune

You will see the following message:

6.2. Building Your First Network 113

hyperledger-fabricdocs Documentation, Release master

WARNING! This will remove all networks not used by at least one container.
Are you sure you want to continue? [y/N]

Select y.

* If you see an error similar to the following:

/bin/bash: ./scripts/script.sh: /bin/bash”M: bad interpreter: No such file or_
—directory

Ensure that the file in question (script.sh in this example) is encoded in the Unix format. This was most likely
caused by not setting core.autocrlf to false in your Git configuration (see Windows extras). There are
several ways of fixing this. If you have access to the vim editor for instance, open the file:

’vim ./fabric-samples/first-network/scripts/script.sh

Then change its format by executing the following vim command:

’:set ff=unix

Note: If you continue to see errors, share your logs on the fabric-questions channel on Hyperledger Rocket Chat or
on StackOverflow.

6.3 Adding an Org to a Channel

Note: Ensure that you have downloaded the appropriate images and binaries as outlined in /nstall Samples, Binaries
and Docker Images and Prerequisites that conform to the version of this documentation (which can be found at the
bottom of the table of contents to the left). In particular, your version of the fabric—-samples folder must include
the eyfn. sh (“Extending Your First Network™) script and its related scripts.

This tutorial serves as an extension to the Building Your First Network (BYFN) tutorial, and will demonstrate the
addition of a new organization — Org3 — to the application channel (mychannel) autogenerated by BYFN. It assumes
a strong understanding of BYFN, including the usage and functionality of the aforementioned utilities.

While we will focus solely on the integration of a new organization here, the same approach can be adopted when
performing other channel configuration updates (updating modification policies or altering batch size, for example).
To learn more about the process and possibilities of channel config updates in general, check out Updating a Channel
Configuration). It’s also worth noting that channel configuration updates like the one demonstrated here will usually
be the responsibility of an organization admin (rather than a chaincode or application developer).

Note: Make sure the automated by fn . sh script runs without error on your machine before continuing. If you have
exported your binaries and the related tools (cryptogen, configtxgen, etc) into your PATH variable, you’ll be
able to modify the commands accordingly without passing the fully qualified path.

6.3.1 Setup the Environment

We will be operating from the root of the first-network subdirectory within your local clone of
fabric-samples. Change into that directory now. You will also want to open a few extra terminals for ease

114 Chapter 6. Tutorials

https://chat.hyperledger.org/home
https://stackoverflow.com/questions/tagged/hyperledger-fabric

hyperledger-fabricdocs Documentation, Release master

of use.

First, use the by fn. sh script to tidy up. This command will kill any active or stale docker containers and remove
previously generated artifacts. It is by no means necessary to bring down a Fabric network in order to perform
channel configuration update tasks. However, for the sake of this tutorial, we want to operate from a known initial
state. Therefore let’s run the following command to clean up any previous environments:

’./byfn.sh down

Now generate the default BYFN artifacts:

’./byfn.sh generate

And launch the network making use of the scripted execution within the CLI container:

’./byfn.sh up

Now that you have a clean version of BYFN running on your machine, you have two different paths you can pursue.
First, we offer a fully commented script that will carry out a config transaction update to bring Org3 into the network.

Also, we will show a “manual” version of the same process, showing each step and explaining what it accomplishes
(since we show you how to bring down your network before this manual process, you could also run the script and
then look at each step).

6.3.2 Bring Org3 into the Channel with the Script

You should be in first-network. To use the script, simply issue the following:

./eyfn.sh up

The output here is well worth reading. You’ll see the Org3 crypto material being added, the config update being
created and signed, and then chaincode being installed to allow Org3 to execute ledger queries.

If everything goes well, you’ll get this message:

’::::::::: All GOOD, EYFN test execution completed ===========

eyfn. sh can be used with the same Node.js chaincode and database options as by fn. sh by issuing the following
(instead of . /byfn.sh up):

’./byfn.sh up -c¢ testchannel -s couchdb -1 node

And then:

’./eyfn.sh up —-c¢ testchannel -s couchdb -1 node

For those who want to take a closer look at this process, the rest of the doc will show you each command for making
a channel update and what it does.

6.3.3 Bring Org3 into the Channel Manually

Note: The manual steps outlined below assume that the CORE_LOGGING_LEVEL in the c1i and Org3cli‘ containers
is set to DEBUG.

For the cli container, you can set this by modifying the docker—-compose-cli.yaml file in the
first-network directory. e.g.

6.3. Adding an Org to a Channel 115

hyperledger-fabricdocs Documentation, Release master

cli:

container_name: cli

image: hyperledger/fabric-tools:$IMAGE_TAG

tty: true

stdin_open: true

environment:
- GOPATH=/opt/gopath
— CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
#- CORE_LOGGING_LEVEL=INFO
— CORE_LOGGING_LEVEL=DEBUG

For the Org3cli container, you can set this by modifying the docker-compose-org3.yaml file in the
first-network directory. e.g.

Org3cli:

container_name: Org3cli

image: hyperledger/fabric-tools:S$IMAGE_TAG

tty: true

stdin_open: true

environment:
- GOPATH=/opt/gopath
— CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock
#— CORE_LOGGING_LEVEL=INFO
— CORE_LOGGING_LEVEL=DEBUG

If you’ve used the ey fn. sh script, you’ll need to bring your network down. This can be done by issuing:

’./eyfn.sh down

This will bring down the network, delete all the containers and undo what we’ve done to add Org3.

When the network is down, bring it back up again.

’./byfn.sh generate

Then:

’./byfn.sh up

This will bring your network back to the same state it was in before you executed the ey fn . sh script.

Now we’re ready to add Org3 manually. As a first step, we’ll need to generate Org3’s crypto material.

6.3.4 Generate the Org3 Crypto Material

In another terminal, change into the org3-artifacts subdirectory from first-network.

cd org3-artifacts

There are two yaml files of interest here: org3-crypto.yaml and configtx.yaml. First, generate the crypto
material for Org3:

’../../bin/cryptogen generate --config=./org3-crypto.yaml

116 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

This command reads in our new crypto yaml file — org3—-crypto.yaml — and leverages cryptogen to generate
the keys and certificates for an Org3 CA as well as two peers bound to this new Org. As with the BYFN implementa-
tion, this crypto material is put into a newly generated crypto—-config folder within the present working directory
(in our case, org3—-artifacts).

Now use the configtxgen utility to print out the Org3-specific configuration material in JSON. We will preface the
command by telling the tool to look in the current directory for the configtx.yaml file that it needs to ingest.

export FABRIC_CFG_PATH=$PWD && ../../bin/configtxgen -printOrg Org3MSP > ../channel-
—artifacts/org3. json

The above command creates a JSON file — org3. json — and outputs it into the channel-artifacts subdirec-
tory at the root of first-network. This file contains the policy definitions for Org3, as well as three important
certificates presented in base 64 format: the admin user certificate (which will be needed to act as the admin of Org3
later on), a CA root cert, and a TLS root cert. In an upcoming step we will append this JSON file to the channel
configuration.

Our final piece of housekeeping is to port the Orderer Org’s MSP material into the Org3 crypto—-config directory.
In particular, we are concerned with the Orderer’s TLS root cert, which will allow for secure communication between
Org3 entities and the network’s ordering node.

cd ../ && cp -r crypto-config/ordererOrganizations org3-artifacts/crypto-config/

Now we’re ready to update the channel configuration. . .

6.3.5 Prepare the CLI Environment

The update process makes use of the configuration translator tool — configtxlator. This tool provides a stateless
REST API independent of the SDK. Additionally it provides a CLI, to simplify configuration tasks in Fabric networks.
The tool allows for the easy conversion between different equivalent data representations/formats (in this case, between
protobufs and JSON). Additionally, the tool can compute a configuration update transaction based on the differences
between two channel configurations.

First, exec into the CLI container. Recall that this container has been mounted with the BYFN crypto-config
library, giving us access to the MSP material for the two original peer organizations and the Orderer Org. The boot-
strapped identity is the Orgl admin user, meaning that any steps where we want to act as Org2 will require the export
of MSP-specific environment variables.

docker exec —-it cli bash

Export the ORDERER_CA and CHANNEL_NAME variables:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
—example.com-cert.pem && export CHANNEL_NAME=mychannel

Check to make sure the variables have been properly set:

echo $ORDERER_CA && echo S$CHANNEL_NAME

Note: If for any reason you need to restart the CLI container, you will also need to re-export the two environment
variables — ORDERER_CA and CHANNEI,_NAME.

6.3. Adding an Org to a Channel 117

hyperledger-fabricdocs Documentation, Release master

6.3.6 Fetch the Configuration

Now we have a CLI container with our two key environment variables — ORDERER_CA and CHANNEL_NAME ex-
ported. Let’s go fetch the most recent config block for the channel —mychannel.

The reason why we have to pull the latest version of the config is because channel config elements are versioned..
Versioning is important for several reasons. It prevents config changes from being repeated or replayed (for instance,
reverting to a channel config with old CRLs would represent a security risk). Also it helps ensure concurrency (if you
want to remove an Org from your channel, for example, after a new Org has been added, versioning will help prevent
you from removing both Orgs, instead of just the Org you want to remove).

peer channel fetch config config block.pb -0 orderer.example.com:7050 —-c $CHANNEL_
< NAME —--tls —-—-cafile SORDERER_CA

This command saves the binary protobuf channel configuration block to config_block.pb. Note that the choice
of name and file extension is arbitrary. However, following a convention which identifies both the type of object being
represented and its encoding (protobuf or JSON) is recommended.

When you issued the peer channel fetch command, there was a decent amount of output in the terminal. The
last line in the logs is of interest:

2017-11-07 17:17:57.383 UTC [channelCmd] readBlock —-> DEBU 011 Received block: 2

This is telling us that the most recent configuration block for mychannel is actually block 2, NOT the genesis block.
By default, the peer channel fetch config command returns the most recent configuration block for the
targeted channel, which in this case is the third block. This is because the BYFN script defined anchor peers for our
two organizations — Orgl and Org2 — in two separate channel update transactions.

As a result, we have the following configuration sequence:
* block 0: genesis block
* block 1: Orgl anchor peer update
¢ block 2: Org2 anchor peer update

6.3.7 Convert the Configuration to JSON and Trim It Down

Now we will make use of the configtxlator tool to decode this channel configuration block into JSON format
(which can be read and modified by humans). We also must strip away all of the headers, metadata, creator signatures,
and so on that are irrelevant to the change we want to make. We accomplish this by means of the jg tool:

configtxlator proto_decode ——-input config_block.pb --type common.Block | jg .data.
—~datal0] .payload.data.config > config. json

This leaves us with a trimmed down JSON object — config. json, located in the fabric—-samples folder inside
first-network — which will serve as the baseline for our config update.

Take a moment to open this file inside your text editor of choice (or in your browser). Even after you’re done with this
tutorial, it will be worth studying it as it reveals the underlying configuration structure and the other kind of channel
updates that can be made. We discuss them in more detail in Updating a Channel Configuration.

6.3.8 Add the Org3 Crypto Material

118 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

Note: The steps you’ve taken up to this point will be nearly identical no matter what kind of config update you’re try-
ing to make. We’ve chosen to add an org with this tutorial because it’s one of the most complex channel configuration
updates you can attempt.

We’ll use the jg tool once more to append the Org3 configuration definition — org3. json — to the channel’s appli-
cation groups field, and name the output —modified_config. json.

jg -s '.[0] % {"channel_group":{"groups":{"Application":{"groups": {"Org3MSP":.[1]}}}}
—}'" config.json ./channel-artifacts/org3.json > modified_config. json

Now, within the CLI container we have two JSON files of interest — config. json and modified_config.
json. The initial file contains only Orgl and Org2 material, whereas “modified” file contains all three Orgs. At this
point it’s simply a matter of re-encoding these two JSON files and calculating the delta.

First, translate config. json back into a protobuf called config.pb:

configtxlator proto_encode ——-input config.json —--type common.Config —--output config.pb

Next, encode modified_config. jsontomodified_config.pb:

configtxlator proto_encode ——input modified_config.json ——-type common.Config —-output,
—modified_config.pb

Now use configtxlator to calculate the delta between these two config protobufs. This command will output a
new protobuf binary named org3_update.pb:

configtxlator compute_update —--channel_id S$SCHANNEL_NAME --original config.pb --
—updated modified_config.pb —--output org3_update.pb

This new proto — org3_update.pb — contains the Org3 definitions and high level pointers to the Orgl and Org2
material. We are able to forgo the extensive MSP material and modification policy information for Orgl and Org2
because this data is already present within the channel’s genesis block. As such, we only need the delta between the
two configurations.

Before submitting the channel update, we need to perform a few final steps. First, let’s decode this object into editable
JSON format and call it org3_update. json:

configtxlator proto_decode ——-input org3_update.pb --type common.ConfigUpdate | jg . >
—org3_update. json

Now, we have a decoded update file — org3_update. json — that we need to wrap in an envelope mes-
sage. This step will give us back the header field that we stripped away earlier. We’ll name this file
org3_update_in_envelope. json:

echo '{"payload":{"header":{"channel_header":{"channel_ id":"mychannel", "type":2}},
—"data":{"config_update":'$ (cat org3_update.json)'}}}' | Jgq . > org3_update_in_
—envelope. json

Using our properly formed JSON - org3_update_in_envelope.json — we will leverage the
configtxlator tool one last time and convert it into the fully fledged protobuf format that Fabric requires. We’ll
name our final update object org3_update_in_envelope.pb:

configtxlator proto_encode ——-input org3_update_in_envelope.json ——-type common.
—Envelope —--output org3_update_in_envelope.pb

6.3. Adding an Org to a Channel 119

hyperledger-fabricdocs Documentation, Release master

6.3.9 Sign and Submit the Config Update

Almost done!

We now have a protobuf binary — org3_update_in_envelope.pb — within our CLI container. However, we
need signatures from the requisite Admin users before the config can be written to the ledger. The modification policy
(mod_policy) for our channel Application group is set to the default of “MAJORITY”, which means that we need a
majority of existing org admins to sign it. Because we have only two orgs — Orgl and Org2 — and the majority of
two is two, we need both of them to sign. Without both signatures, the ordering service will reject the transaction for
failing to fulfill the policy.

First, let’s sign this update proto as the Orgl Admin. Remember that the CLI container is bootstrapped with the Orgl
MSP material, so we simply need to issue the peer channel signconfigtx command:

peer channel signconfigtx —-f org3_update_in_envelope.pb

The final step is to switch the CLI container’s identity to reflect the Org2 Admin user. We do this by exporting four
environment variables specific to the Org2 MSP.

Note: Switching between organizations to sign a config transaction (or to do anything else) is not reflective of a real-
world Fabric operation. A single container would never be mounted with an entire network’s crypto material. Rather,
the config update would need to be securely passed out-of-band to an Org2 Admin for inspection and approval.

Export the Org2 environment variables:

you can issue all of these commands at once
export CORE_PEER_LOCALMSPID="Org2MSP"

export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/
—crypto/peerOrganizations/org2.example.com/peers/peer(0.org2.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/
—crypto/peerOrganizations/org2.example.com/users/Admin@org2.example.com/msp

export CORE_PEER_ADDRESS=peer(.org2.example.com: 7051

Lastly, we will issue the peer channel update command. The Org2 Admin signature will be attached to this
call so there is no need to manually sign the protobuf a second time:

Note: The upcoming update call to the ordering service will undergo a series of systematic signature and policy
checks. As such you may find it useful to stream and inspect the ordering node’s logs. From another shell, issue a
docker logs —-f orderer.example.comcommand to display them.

Send the update call:

peer channel update —-f org3_update_in_envelope.pb —-c $CHANNEL_NAME -o orderer.example.
—com:7050 ——tls ——cafile SORDERER_CA

You should see a message digest indication similar to the following if your update has been submitted successfully:

2018-02-24 18:56:33.499 UTC [msp/identity] Sign -> DEBU 00f Sign: digest:,
—3207B24E40DE2FAB87A2E42BCO04FEAAIEGFDCA42977CB78C64F05A88E556ABA

You will also see the submission of our configuration transaction:

120 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

2018-02-24 18:56:33.499 UTC [channelCmd] update —-> INFO 010 Successfully submitted
—channel update

The successful channel update call returns a new block — block 5 — to all of the peers on the channel. If you remember,
blocks 0-2 are the initial channel configurations while blocks 3 and 4 are the instantiation and invocation of the mycc
chaincode. As such, block 5 serves as the most recent channel configuration with Org3 now defined on the channel.

Inspect the logs for peer0.orgl.example.com:

docker logs —f peer0O.orgl.example.com

Follow the demonstrated process to fetch and decode the new config block if you wish to inspect its contents.

6.3.10 Configuring Leader Election

Note: This section is included as a general reference for understanding the leader election settings when adding
organizations to a network after the initial channel configuration has completed. This sample defaults to dynamic
leader election, which is set for all peers in the network in peer-base.yaml.

Newly joining peers are bootstrapped with the genesis block, which does not contain information about the organi-
zation that is being added in the channel configuration update. Therefore new peers are not able to utilize gossip
as they cannot verify blocks forwarded by other peers from their own organization until they get the configuration
transaction which added the organization to the channel. Newly added peers must therefore have one of the following
configurations so that they receive blocks from the ordering service:

1. To utilize static leader mode, configure the peer to be an organization leader:

CORE_PEER_GOSSIP_USELEADERELECTION=false
CORE_PEER_GOSSIP_ORGLEADER=true

Note: This configuration must be the same for all new peers added to the channel.

2. To utilize dynamic leader election, configure the peer to use leader election:

CORE_PEER_GOSSIP_USELEADERELECTION=true
CORE_PEER_GOSSIP_ORGLEADER=false

Note: Because peers of the newly added organization won’t be able to form membership view, this option will
be similar to the static configuration, as each peer will start proclaiming itself to be a leader. However, once they get
updated with the configuration transaction that adds the organization to the channel, there will be only one active leader
for the organization. Therefore, it is recommended to leverage this option if you eventually want the organization’s
peers to utilize leader election.

6.3.11 Join Org3 to the Channel

At this point, the channel configuration has been updated to include our new organization — Org3 — meaning that
peers attached to it can now join mychannel.

First, let’s launch the containers for the Org3 peers and an Org3-specific CLIL.

6.3. Adding an Org to a Channel 121

hyperledger-fabricdocs Documentation, Release master

Open a new terminal and from first-network kick off the Org3 docker compose:

docker-compose -f docker-compose-org3.yaml up -d

This new compose file has been configured to bridge across our initial network, so the two peers and the CLI container
will be able to resolve with the existing peers and ordering node. With the three new containers now running, exec
into the Org3-specific CLI container:

docker exec —-it Org3cli bash

Just as we did with the initial CLI container, export the two key environment variables: ORDERER_CA and
CHANNEL_NAME:

export ORDERER_CA=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
—ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
—example.com-cert.pem && export CHANNEL_NAME=mychannel

Check to make sure the variables have been properly set:

echo $ORDERER_CA && echo S$CHANNEL_NAME

Now let’s send a call to the ordering service asking for the genesis block of mychannel. The ordering service is able
to verify the Org3 signature attached to this call as a result of our successful channel update. If Org3 has not been
successfully appended to the channel config, the ordering service should reject this request.

Note: Again, you may find it useful to stream the ordering node’s logs to reveal the sign/verify logic and policy
checks.

Use the peer channel fetch command to retrieve this block:

peer channel fetch 0 mychannel.block -o orderer.example.com:7050 -c S$SCHANNEL_NAME --
—~tls ——cafile S$SORDERER_CA

Notice, that we are passing a 0 to indicate that we want the first block on the channel’s ledger (i.e. the genesis block).
If we simply passed the peer channel fetch config command, then we would have received block 5 — the
updated config with Org3 defined. However, we can’t begin our ledger with a downstream block — we must start with
block 0.

Issue the peer channel join command and pass in the genesis block — mychannel .block:

peer channel join -b mychannel.block

If you want to join the second peer for Org3, export the TLS and ADDRESS variables and reissue the peer channel
join command:

export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/
—crypto/peerOrganizations/org3.example.com/peers/peerl.org3.example.com/tls/ca.crt &&
— export CORE_PEER_ADDRESS=peerl.org3.example.com:7051

peer channel join -b mychannel.block

6.3.12 Upgrade and Invoke Chaincode

The final piece of the puzzle is to increment the chaincode version and update the endorsement policy to include Org3.
Since we know that an upgrade is coming, we can forgo the futile exercise of installing version 1 of the chaincode.

122 Chapter 6. Tutorials

hyperledger-fabricdocs Documentation, Release master

We are solely concerned with the new version where Org3 will be part of the endorsement policy, therefore we’ll jump
directly to version 2 of the chaincode.

From the Org3 CLI:

peer chaincode install -n mycc -v 2.0 -p github.com/chaincode/chaincode_example02/go/

Modify the environment variables accordingly and reissue the command if you want to install the chaincode on the
second peer of Org3. Note that a second installation is not mandated, as you only need to install chaincode on peers
that are going to serve as endorsers or otherwise interface with the ledger (i.e. query only). Peers will still run the
validation logic and serve as committers without a running chaincode container.

Now jump back to the original CLI container and install the new version on the Orgl and Org2 peers. We submitted
the channel update call with the Org2 admin identity, so the container is still acting on behalf of peer0.org2:

peer chaincode install -n mycc -v 2.0 -p github.com/chaincode/chaincode_example02/go/

Flip to the peer0.orgl identity:

export CORE_PEER_LOCALMSPID="OrglMSP"

export CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/
—crypto/peerOrganizations/orgl.example.com/peers/peer0.orgl.example.com/tls/ca.crt

export CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/
—crypto/peerOrganizations/orgl.example.com/users/Admin@orgl.example.com/msp

export CORE_PEER_ADDRESS=peer(0.orgl.example.com:7051

And install again:

peer chaincode install -n mycc -v 2.0 -p github.com/chaincode/chaincode_example02/go/

Now we’re ready to upgrade the chaincode. There have been no modifications to the underlying source code, we are
simply adding Org3 to the endorsement policy for a chaincode — mycc —on mychannel.

Note: Any identity satisfying the chaincode’s instantiation policy can issue the upgrade call. By default, these
identities are the channel Admins.

Send the call:

peer chaincode upgrade -o orderer.example.com:7050 --tls S$CORE_PEER_TLS_ENABLED --
<scafile SORDERER_CA -C $CHANNEL_NAME -n mycc -v 2.0 -c '{"Args":["init","a","90","b",
—"210"]}"' -P "OR ('OrglMSP.peer',6 '0Org2MSP.peer', 'Org3MSP.peer')"

You can see in the above command that we are specifying our new version by means of the v flag. You can also see that
the endorsement policy has been modified to -P "OR ('OrglMSP.peer', 'Org2MSP.peer', 'Org3MSP.
peer') ", reflecting the addition of Org3 to the policy. The final area of interest is our constructor request (specified
with the c flag).

As with an instantiate call, a chaincode upgrade requires usage of the init method. If your chaincode requires
arguments be passed to the init method, then you will need to do so here.

The upgrade call adds a new block — block 6 — to the channel’s ledger and allows for the Org3 peers to execute
transactions during the endorsement phase. Hop back to the Org3 CLI container and issue a query for the value of a.
This will take a bit of time because a chaincode image needs to be built for the targeted peer, and the container needs
to start:

6.3. Adding an Org to a Channel 123

hyperledger-fabricdocs Documentation, Release master

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

We should see a response of Query Result: 90.

Now issue an invocation to move 10 from a to b:

peer chaincode invoke -o orderer.example.com:7050 --tls S$CORE_PEER_TLS_ENABLED --
—~cafile SORDERER_CA -C S$CHANNEL_NAME -n mycc -c '{"Args":["invoke","a","b","10"]}'

Query one final time:

peer chaincode query —-C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

We should see a response of Query Result: 80, accurately reflecting the update of this chaincode’s world state.

6.3.13 Conclusion

The channel configuration update process is indeed quite involved, but there is a logical method to the various steps.
The endgame is to form a delta transaction object represented in protobuf binary format and then acquire the requisite
number of admin signatures such that the channel configuration update transaction fulfills the channel’s modification
policy.

The configtxlator and jq tools, along with the ever-growing peer channel commands, provide us with the
functionality to accomplish this task.

6.4 Upgrading Your Network Components

Note: When we use the term “upgrade” in this documentation, we’re primarily referring to changing the version of a
component (for example, going from a v1.2 binary to a v1.3 binary). The term “update,” on the other hand, refers not
to versions but to configuration changes, such as updating a channel configuration or a deployment script. As there is
no data migration, technically speaking, in Fabric, we will not use the term “migration” or “migrate” here.

Note: Also, if your network is not yet at Fabric v1.2, follow the instructions for Upgrading Your Network to v1.2.
The instructions in this documentation only cover moving from v1.2 to v1.3, not from any other version to v1.3.

6.4.1 Overview
Because the Building Your First Network (BYFN) tutorial defaults to the “latest” binaries, if you have run it since the
release of v1.3, your machine will have v1.3 binaries and tools installed on it and you will not be able to upgrade them.

As a result, this tutorial will provide a network based on Hyperledger Fabric v1.2 binaries as well as the v1.3 binaries
you will be upgrading to. In addition, we will show how to add the new v1.3 capabilities. For more information about
capabilities, check out our Capability Requirements documentation.

There are two new capabilities for v1.3:
1. A top-level channel capability that allows Identity Mixer to work.

2. A channel\application capability that enables state-based endorsement. For more information about
state-based endorsement check out our documentation on Endorsement policies.

124 Chapter 6. Tutorials

http://hyperledger-fabric.readthedocs.io/en/release-1.2/upgrading_your_network_tutorial.html

hyperledger-fabricdocs Documentation, Release master

The first may be set on all channels, including the orderer system channel. The second may only be set in the applica-
tion group (which is only defined in application channels and affects peer network behavior, such as how transactions
are handled by the peer).

Note: Setting capabilities as part of an upgrade (or at any other time) is optional. However, unless a capability is set,
it cannot be leveraged (to use state-based endorsement or Identity Mixer, in this case).

Because the BYFN deployment script creates a channel called mychannel, we will also update the configuration of
mychannel. Any subsequently created channels will copy the configuration of the orderer system channel and will
therefore have the channel capability enabled.

At a high level, our upgrade tutorial will perform the following steps:
1. Back up the ledger and MSPs.
2. Upgrade the orderer binaries to Fabric v1.3.
3. Upgrade the peer binaries to Fabric v1.3.
4. Enable the v1.3 capabilities.

This tutorial will demonstrate how to perform each of these steps individually with CLI commands. We will also
describe how the CLI tools image can be updated.

Note: Because BYFN uses a “SOLO” ordering service (one orderer), our script brings down the entire network.
However, in production environments, the orderers and peers can be upgraded simultaneously and on a rolling basis.
In other words, you can upgrade the binaries in any order without bringing down the network.

Because BYFN does not support the following components, our script for upgrading BYFN will not cover them:
* Fabric CA
» Kafka
* CouchDB
* SDK

The process for upgrading these components — if necessary — will be covered in a section following the tutorial. We
will also show how to upgrade the Node chaincode shim.

Prerequisites

If you haven’t already done so, ensure you have all of the dependencies on your machine as described in Prerequisites.

6.4.2 Launch a v1.2 network

Before we can upgrade to v1.3, we must first provision a network running Fabric v1.2 images.

Just as in the BYFN tutorial, we will be operating from the first-network subdirectory within your local clone
of fabric—-samples. Change into that directory now. You will also want to open a few extra terminals for ease of
use.

6.4. Upgrading Your Network Components 125

hyperledger-fabricdocs Documentation, Release master

Clean up

We want to operate from a known state, so we will use the by £n . sh script to kill any active or stale docker containers
a