hyperledger-fabricdocs Documentation
Release master

hyperledger

Sep 02, 2020

Contents

10

11

12

13

14

15

Introduction

What’s new in v1.3
Release notes

Key Concepts

Getting Started
Tutorials

Operations Guides
Commands Reference
Architecture Reference
Frequently Asked Questions
Contributions Welcome!
Glossary

Releases

Still Have Questions?

Status

11

13

79

85

181

239

285

319

325

349

359

361

363

hyperledger-fabricdocs Documentation, Release master

~ “/« HYPERLEDGER

%Y FABRIC

Enterprise grade permissioned distributed ledger platform that offers modularity and versatility for a broad set of
industry use cases.

Contents 1

hyperledger-fabricdocs Documentation, Release master

2 Contents

CHAPTER 1

Introduction

In general terms, a blockchain is an immutable transaction ledger, maintained within a distributed network of peer
nodes. These nodes each maintain a copy of the ledger by applying transactions that have been validated by a consensus
protocol, grouped into blocks that include a hash that bind each block to the preceding block.

The first and most widely recognized application of blockchain is the Bitcoin cryptocurrency, though others have
followed in its footsteps. Ethereum, an alternative cryptocurrency, took a different approach, integrating many of the
same characteristics as Bitcoin but adding smart contracts to create a platform for distributed applications. Bitcoin
and Ethereum fall into a class of blockchain that we would classify as public permissionless blockchain technology.
Basically, these are public networks, open to anyone, where participants interact anonymously.

As the popularity of Bitcoin, Ethereum and a few other derivative technologies grew, interest in applying the underlying
technology of the blockchain, distributed ledger and distributed application platform to more innovative enterprise
use cases also grew. However, many enterprise use cases require performance characteristics that the permissionless
blockchain technologies are unable (presently) to deliver. In addition, in many use cases, the identity of the participants
is a hard requirement, such as in the case of financial transactions where Know- Your-Customer (KYC) and Anti-Money
Laundering (AML) regulations must be followed.

For enterprise use, we need to consider the following requirements:
« Participants must be identified/identifiable
* Networks need to be permissioned
* High transaction throughput performance
* Low latency of transaction confirmation
* Privacy and confidentiality of transactions and data pertaining to business transactions

While many early blockchain platforms are currently being adapted for enterprise use, Hyperledger Fabric has been
designed for enterprise use from the outset. The following sections describe how Hyperledger Fabric (Fabric) differ-
entiates itself from other blockchain platforms and describes some of the motivation for its architectural decisions.

https://en.wikipedia.org/wiki/Bitcoin

hyperledger-fabricdocs Documentation, Release master

1.1 Hyperledger Fabric

Hyperledger Fabric is an open source enterprise-grade permissioned distributed ledger technology (DLT) platform,
designed for use in enterprise contexts, that delivers some key differentiating capabilities over other popular distributed
ledger or blockchain platforms.

One key point of differentiation is that Hyperledger was established under the Linux Foundation, which itself has a
long and very successful history of nurturing open source projects under open governance that grow strong sustaining
communities and thriving ecosystems. Hyperledger is governed by a diverse technical steering committee, and the Hy-
perledger Fabric project by a diverse set of maintainers from multiple organizations. It has a development community
that has grown to over 35 organizations and nearly 200 developers since its earliest commits.

Fabric has a highly modular and configurable architecture, enabling innovation, versatility and optimization for a
broad range of industry use cases including banking, finance, insurance, healthcare, human resources, supply chain
and even digital music delivery.

Fabric is the first distributed ledger platform to support smart contracts authored in general-purpose programming
languages such as Java, Go and Node.js, rather than constrained domain-specific languages (DSL). This means that
most enterprises already have the skill set needed to develop smart contracts, and no additional training to learn a new
language or DSL is needed.

The Fabric platform is also permissioned, meaning that, unlike with a public permissionless network, the participants
are known to each other, rather than anonymous and therefore fully untrusted. This means that while the participants
may not fully trust one another (they may, for example, be competitors in the same industry), a network can be operated
under a governance model that is built off of what trust does exist between participants, such as a legal agreement or
framework for handling disputes.

One of the most important of the platform’s differentiators is its support for pluggable consensus protocols that
enable the platform to be more effectively customized to fit particular use cases and trust models. For instance, when
deployed within a single enterprise, or operated by a trusted authority, fully byzantine fault tolerant consensus might
be considered unnecessary and an excessive drag on performance and throughput. In situations such as that, a crash
fault-tolerant (CFT) consensus protocol might be more than adequate whereas, in a multi-party, decentralized use case,
a more traditional byzantine fault tolerant (BFT) consensus protocol might be required.

Fabric can leverage consensus protocols that do not require a native cryptocurrency to incent costly mining or to
fuel smart contract execution. Avoidance of a cryptocurrency reduces some significant risk/attack vectors, and absence
of cryptographic mining operations means that the platform can be deployed with roughly the same operational cost
as any other distributed system.

The combination of these differentiating design features makes Fabric one of the better performing platforms avail-
able today both in terms of transaction processing and transaction confirmation latency, and it enables privacy and
confidentiality of transactions and the smart contracts (what Fabric calls “chaincode’) that implement them.

Let’s explore these differentiating features in more detail.

1.2 Modularity

Hyperledger Fabric has been specifically architected to have a modular architecture. Whether it is pluggable con-
sensus, pluggable identity management protocols such as LDAP or OpenID Connect, key management protocols or
cryptographic libraries, the platform has been designed at its core to be configured to meet the diversity of enterprise
use case requirements.

At a high level, Fabric is comprised of the following modular components:

* A pluggable ordering service establishes consensus on the order of transactions and then broadcasts blocks to
peers.

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance

hyperledger-fabricdocs Documentation, Release master

* A pluggable membership service provider is responsible for associating entities in the network with crypto-
graphic identities.

* An optional peer-to-peer gossip service disseminates the blocks output by ordering service to other peers.

e Smart contracts (“‘chaincode”) run within a container environment (e.g. Docker) for isolation. They can be
written in standard programming languages but do not have direct access to the ledger state.

» The ledger can be configured to support a variety of DBMSs.

* A pluggable endorsement and validation policy enforcement that can be independently configured per applica-
tion.

There is fair agreement in the industry that there is no “one blockchain to rule them all”. Hyperledger Fabric can be
configured in multiple ways to satisfy the diverse solution requirements for multiple industry use cases.

1.3 Permissioned vs Permissionless Blockchains

In a permissionless blockchain, virtually anyone can participate, and every participant is anonymous. In such a context,
there can be no trust other than that the state of the blockchain, prior to a certain depth, is immutable. In order
to mitigate this absence of trust, permissionless blockchains typically employ a “mined” native cryptocurrency or
transaction fees to provide economic incentive to offset the extraordinary costs of participating in a form of byzantine
fault tolerant consensus based on “proof of work” (PoW).

Permissioned blockchains, on the other hand, operate a blockchain amongst a set of known, identified and often vetted
participants operating under a governance model that yields a certain degree of trust. A permissioned blockchain
provides a way to secure the interactions among a group of entities that have a common goal but which may not fully
trust each other. By relying on the identities of the participants, a permissioned blockchain can use more traditional
crash fault tolerant (CFT) or byzantine fault tolerant (BFT) consensus protocols that do not require costly mining.

Additionally, in such a permissioned context, the risk of a participant intentionally introducing malicious code through
a smart contract is diminished. First, the participants are known to one another and all actions, whether submitting
application transactions, modifying the configuration of the network or deploying a smart contract are recorded on the
blockchain following an endorsement policy that was established for the network and relevant transaction type. Rather
than being completely anonymous, the guilty party can be easily identified and the incident handled in accordance
with the terms of the governance model.

1.4 Smart Contracts

A smart contract, or what Fabric calls “chaincode”, functions as a trusted distributed application that gains its secu-
rity/trust from the blockchain and the underlying consensus among the peers. It is the business logic of a blockchain
application.

There are three key points that apply to smart contracts, especially when applied to a platform:
* many smart contracts run concurrently in the network,
* they may be deployed dynamically (in many cases by anyone), and
* application code should be treated as untrusted, potentially even malicious.

Most existing smart-contract capable blockchain platforms follow an order-execute architecture in which the consen-
sus protocol:

* validates and orders transactions then propagates them to all peer nodes,

* each peer then executes the transactions sequentially.

1.3. Permissioned vs Permissionless Blockchains 5

hyperledger-fabricdocs Documentation, Release master

The order-execute architecture can be found in virtually all existing blockchain systems, ranging from pub-
lic/permissionless platforms such as Ethereum (with PoW-based consensus) to permissioned platforms such as Ten-
dermint, Chain, and Quorum.

Smart contracts executing in a blockchain that operates with the order-execute architecture must be deterministic;
otherwise, consensus might never be reached. To address the non-determinism issue, many platforms require that the
smart contracts be written in a non-standard, or domain-specific language (such as Solidity) so that non-deterministic
operations can be eliminated. This hinders wide-spread adoption because it requires developers writing smart contracts
to learn a new language and may lead to programming errors.

Further, since all transactions are executed sequentially by all nodes, performance and scale is limited. The fact that
the smart contract code executes on every node in the system demands that complex measures be taken to protect the
overall system from potentially malicious contracts in order to ensure resiliency of the overall system.

1.5 A New Approach

Fabric introduces a new architecture for transactions that we call execute-order-validate. It addresses the resiliency,
flexibility, scalability, performance and confidentiality challenges faced by the order-execute model by separating the
transaction flow into three steps:

* execute a transaction and check its correctness, thereby endorsing it,
* order transactions via a (pluggable) consensus protocol, and
* validate transactions against an application-specific endorsement policy before committing them to the ledger

This design departs radically from the order-execute paradigm in that Fabric executes transactions before reaching
final agreement on their order.

In Fabric, an application-specific endorsement policy specifies which peer nodes, or how many of them, need to vouch
for the correct execution of a given smart contract. Thus, each transaction need only be executed (endorsed) by the
subset of the peer nodes necessary to satisfy the transaction’s endorsement policy. This allows for parallel execution
increasing overall performance and scale of the system. This first phase also eliminates any non-determinism, as
inconsistent results can be filtered out before ordering.

Because we have eliminated non-determinism, Fabric is the first blockchain technology that enables use of standard
programming languages. In the 1.1.0 release, smart contracts can be written in either Go or Node.js, while there are
plans to support other popular languages including Java in subsequent releases.

1.6 Privacy and Confidentiality

As we have discussed, in a public, permissionless blockchain network that leverages PoW for its consensus model,
transactions are executed on every node. This means that neither can there be confidentiality of the contracts them-
selves, nor of the transaction data that they process. Every transaction, and the code that implements it, is visible to
every node in the network. In this case, we have traded confidentiality of contract and data for byzantine fault tolerant
consensus delivered by PoW.

This lack of confidentiality can be problematic for many business/enterprise use cases. For example, in a network of
supply-chain partners, some consumers might be given preferred rates as a means of either solidifying a relationship,
or promoting additional sales. If every participant can see every contract and transaction, it becomes impossible to
maintain such business relationships in a completely transparent network — everyone will want the preferred rates!

As a second example, consider the securities industry, where a trader building a position (or disposing of one) would
not want her competitors to know of this, or else they will seek to get in on the game, weakening the trader’s gambit.

6 Chapter 1. Introduction

https://ethereum.org/
http://tendermint.com/
http://tendermint.com/
http://chain.com/
http://www.jpmorgan.com/global/Quorum
https://solidity.readthedocs.io/en/v0.4.23/

hyperledger-fabricdocs Documentation, Release master

In order to address the lack of privacy and confidentiality for purposes of delivering on enterprise use case require-
ments, blockchain platforms have adopted a variety of approaches. All have their trade-offs.

Encrypting data is one approach to providing confidentiality; however, in a permissionless network leveraging PoW
for its consensus, the encrypted data is sitting on every node. Given enough time and computational resource, the
encryption could be broken. For many enterprise use cases, the risk that their information could become compromised
is unacceptable.

Zero knowledge proofs (ZKP) are another area of research being explored to address this problem, the trade-off here
being that, presently, computing a ZKP requires considerable time and computational resources. Hence, the trade-off
in this case is performance for confidentiality.

In a permissioned context that can leverage alternate forms of consensus, one might explore approaches that restrict
the distribution of confidential information exclusively to authorized nodes.

Hyperledger Fabric, being a permissioned platform, enables confidentiality through its channel architecture. Basically,
participants on a Fabric network can establish a “channel” between the subset of participants that should be granted
visibility to a particular set of transactions. Think of this as a network overlay. Thus, only those nodes that participate in
a channel have access to the smart contract (chaincode) and data transacted, preserving the privacy and confidentiality
of both.

To improve upon its privacy and confidentiality capabilities, Fabric has added support for private data and is working
on zero knowledge proofs (ZKP) available in the future. More on this as it becomes available.

1.7 Pluggable Consensus

The ordering of transactions is delegated to a modular component for consensus that is logically decoupled from
the peers that execute transactions and maintain the ledger. Specifically, the ordering service. Since consensus is
modular, its implementation can be tailored to the trust assumption of a particular deployment or solution. This
modular architecture allows the platform to rely on well-established toolkits for CFT (crash fault-tolerant) or BFT
(byzantine fault-tolerant) ordering.

In the currently available releases, Fabric offers a CFT ordering service implemented with Kafka and Zookeeper. In
subsequent releases, Fabric will deliver a Raft consensus ordering service implemented with etcd/Raft and a fully
decentralized BFT ordering service.

Note also that these are not mutually exclusive. A Fabric network can have multiple ordering services supporting
different applications or application requirements.

1.8 Performance and Scalability

Performance of a blockchain platform can be affected by many variables such as transaction size, block size, network
size, as well as limits of the hardware, etc. The Hyperledger community is currently developing a draft set of measures
within the Performance and Scale working group, along with a corresponding implementation of a benchmarking
framework called Hyperledger Caliper.

While that work continues to be developed and should be seen as a definitive measure of blockchain platform per-
formance and scale characteristics, a team from IBM Research has published a peer reviewed paper that evaluated
the architecture and performance of Hyperledger Fabric. The paper offers an in-depth discussion of the architec-
ture of Fabric and then reports on the team’s performance evaluation of the platform using a preliminary release of
Hyperledger Fabric v1.1.

The benchmarking efforts that the research team did yielded a significant number of performance improvements for
the Fabric v1.1.0 release that more than doubled the overall performance of the platform from the v1.0.0 release levels.

1.7. Pluggable Consensus 7

./private-data/private-data.html
https://kafka.apache.org/
https://zookeeper.apache.org/
https://raft.github.io/
https://docs.google.com/document/d/1DQ6PqoeIH0pCNJSEYiw7JVbExDvWh_ZRVhWkuioG4k0/edit#heading=h.t3gztry2ja8i
https://wiki.hyperledger.org/projects/caliper
https://arxiv.org/abs/1801.10228v1

hyperledger-fabricdocs Documentation, Release master

1.9 Conclusion

Any serious evaluation of blockchain platforms should include Hyperledger Fabric in its short list.

Combined, the differentiating capabilities of Fabric make it a highly scalable system for permissioned blockchains
supporting flexible trust assumptions that enable the platform to support a wide range of industry use cases ranging
from government, to finance, to supply-chain logistics, to healthcare and so much more.

More importantly, Hyperledger Fabric is the most active of the (currently) ten Hyperledger projects. The community
building around the platform is growing steadily, and the innovation delivered with each successive release far out-
paces any of the other enterprise blockchain platforms.

1.10 Acknowledgement

The preceding is derived from the peer reviewed “Hyperledger Fabric: A Distributed Operating System for Per-
missioned Blockchains™ - Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis,
Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan,
Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou,
Marko Vukolic, Sharon Weed Cocco, Jason Yellick

8 Chapter 1. Introduction

https://arxiv.org/abs/1801.10228v1
https://arxiv.org/abs/1801.10228v1

CHAPTER 2

What’s new in v1.3

A quick rundown of the new features and documentation in the v1.3 release of Hyperledger Fabric:

2.1

New features

e MSP Implementation with Identity Mixer: A way to keep identities anonymous and unlinkable through the use

2.2

of zero-knowledge proofs. There is a tool that can generate Identity Mixer credentials in test environments
known as idexmigen, the documentation for which can be found in /dentity Mixer MSP configuration generator
(idemixgen).

Setting key-level endorsement policies: Allows the default chaincode-level endorsement policy to be overridden
by a per-key endorsement policy.

Query the CouchDB State Database With Pagination: Clients can now page through result sets from chaincode
queries, making it feasible to support large result sets with high performance.

Chaincode for Developers: As an addition to the current Fabric support for chaincode written in Go and node.js,
Java is now supported. You can find a javadoc for this here.

Peer channel-based event services: The peer channel-based event service itself is not new (it first debuted in
v1.1), but the v1.3 release marks the end of the old event hub. Applications using the old event hub must switch
over to the new peer channel-based event service prior to upgrading to v1.3.

New tutorials

Upgrading to the Newest Version of Fabric: Leverages the BYFN network to show how an upgrade flow should
work. Includes both a script (which can serve as a template for upgrades), as well as the individual commands.

Query the CouchDB State Database With Pagination: Expands the current CouchDB tutorial to add pagination.

https://fabric-chaincode-java.github.io/

hyperledger-fabricdocs Documentation, Release master

2.3 Other new documentation

* Blockchain network: Conceptual documentation that shows how the parts of a network interact with each other.
The initial version of this document was added in v1.2.

10 Chapter 2. What’s new in v1.3

CHAPTER 3

Release notes

For more information, including FAB numbers for the issues and code reviews that made up these changes (in addition
to other hygiene/performance/bug fixes we did not explicitly document), check out the release notes. Note that these
links will not work on the release candidate, only on the GA release.

¢ Fabric release notes.

¢ Fabric CA release notes.

11

https://github.com/hyperledger/fabric/releases/tag/v1.3.0
https://github.com/hyperledger/fabric-ca/releases/tag/v1.3.0

hyperledger-fabricdocs Documentation, Release master

12 Chapter 3. Release notes

CHAPTER 4

Key Concepts

4.1 Introduction

Hyperledger Fabric is a platform for distributed ledger solutions underpinned by a modular architecture delivering high
degrees of confidentiality, resiliency, flexibility, and scalability. It is designed to support pluggable implementations
of different components and accommodate the complexity and intricacies that exist across the economic ecosystem.

We recommend first-time users begin by going through the rest of the introduction below in order to gain familiarity
with how blockchains work and with the specific features and components of Hyperledger Fabric.

Once comfortable — or if you’re already familiar with blockchain and Hyperledger Fabric — go to Getting Started
and from there explore the demos, technical specifications, APIs, etc.

4.1.1 What is a Blockchain?

A Distributed Ledger

At the heart of a blockchain network is a distributed ledger that records all the transactions that take place on the
network.

A blockchain ledger is often described as decentralized because it is replicated across many network participants,
each of whom collaborate in its maintenance. We’ll see that decentralization and collaboration are powerful attributes
that mirror the way businesses exchange goods and services in the real world.

13

hyperledger-fabricdocs Documentation, Release master

In addition to being decentralized and collaborative, the information recorded to a blockchain is append-only, using
cryptographic techniques that guarantee that once a transaction has been added to the ledger it cannot be modified.
This property of “immutability” makes it simple to determine the provenance of information because participants can
be sure information has not been changed after the fact. It’s why blockchains are sometimes described as systems of
proof.

Smart Contracts

To support the consistent update of information — and to enable a whole host of ledger functions (transacting, query-
ing, etc) — a blockchain network uses smart contracts to provide controlled access to the ledger.

14 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

written to
the ledger

O

updating
transaction

Smart contract

Smart contracts are not only a key mechanism for encapsulating information and keeping it simple across the network,
they can also be written to allow participants to execute certain aspects of transactions automatically.

A smart contract can, for example, be written to stipulate the cost of shipping an item where the shipping charge
changes depending on how quickly the item arrives. With the terms agreed to by both parties and written to the ledger,
the appropriate funds change hands automatically when the item is received.

Consensus

The process of keeping the ledger transactions synchronized across the network — to ensure that ledgers update only
when transactions are approved by the appropriate participants, and that when ledgers do update, they update with the
same transactions in the same order — is called consensus.

4.1. Introduction 15

hyperledger-fabricdocs Documentation, Release master

Ol
O

You’ll learn a lot more about ledgers, smart contracts and consensus later. For now, it’s enough to think of a blockchain
as a shared, replicated transaction system which is updated via smart contracts and kept consistently synchronized
through a collaborative process called consensus.

4.1.2 Why is a Blockchain useful?

Today’s Systems of Record

The transactional networks of today are little more than slightly updated versions of networks that have existed since
business records have been kept. The members of a business network transact with each other, but they maintain
separate records of their transactions. And the things they re transacting — whether it’s Flemish tapestries in the 16th
century or the securities of today — must have their provenance established each time they’re sold to ensure that the
business selling an item possesses a chain of title verifying their ownership of it.

What you’re left with is a business network that looks like this:

16 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Modern technology has taken this process from stone tablets and paper folders to hard drives and cloud platforms, but
the underlying structure is the same. Unified systems for managing the identity of network participants do not exist,
establishing provenance is so laborious it takes days to clear securities transactions (the world volume of which is
numbered in the many trillions of dollars), contracts must be signed and executed manually, and every database in the
system contains unique information and therefore represents a single point of failure.

It’s impossible with today’s fractured approach to information and process sharing to build a system of record that
spans a business network, even though the needs of visibility and trust are clear.

The Blockchain Difference

What if, instead of the rat’s nest of inefficiencies represented by the “modern” system of transactions, business net-
works had standard methods for establishing identity on the network, executing transactions, and storing data? What
if establishing the provenance of an asset could be determined by looking through a list of transactions that, once
written, cannot be changed, and can therefore be trusted?

That business network would look more like this:

4.1. Introduction 17

hyperledger-fabricdocs Documentation, Release master

EEEEEEE,

]

OO OO0

This is a blockchain network, wherein every participant has their own replicated copy of the ledger. In addition to
ledger information being shared, the processes which update the ledger are also shared. Unlike today’s systems, where
a participant’s private programs are used to update their private ledgers, a blockchain system has shared programs
to update shared ledgers.

With the ability to coordinate their business network through a shared ledger, blockchain networks can reduce the
time, cost, and risk associated with private information and processing while improving trust and visibility.

You now know what blockchain is and why it’s useful. There are a lot of other details that are important, but they all
relate to these fundamental ideas of the sharing of information and processes.

4.1.3 What is Hyperledger Fabric?

The Linux Foundation founded the Hyperledger project in 2015 to advance cross-industry blockchain technologies.
Rather than declaring a single blockchain standard, it encourages a collaborative approach to developing blockchain
technologies via a community process, with intellectual property rights that encourage open development and the
adoption of key standards over time.

Hyperledger Fabric is one of the blockchain projects within Hyperledger. Like other blockchain technologies, it has a
ledger, uses smart contracts, and is a system by which participants manage their transactions.

18 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Where Hyperledger Fabric breaks from some other blockchain systems is that it is private and permissioned. Rather
than an open permissionless system that allows unknown identities to participate in the network (requiring protocols
like “proof of work™ to validate transactions and secure the network), the members of a Hyperledger Fabric network
enroll through a trusted Membership Service Provider (MSP).

Hyperledger Fabric also offers several pluggable options. Ledger data can be stored in multiple formats, consensus
mechanisms can be swapped in and out, and different MSPs are supported.

Hyperledger Fabric also offers the ability to create channels, allowing a group of participants to create a separate ledger
of transactions. This is an especially important option for networks where some participants might be competitors and
not want every transaction they make — a special price they’re offering to some participants and not others, for
example — known to every participant. If two participants form a channel, then those participants — and no others —
have copies of the ledger for that channel.

Shared Ledger

Hyperledger Fabric has a ledger subsystem comprising two components: the world state and the transaction log.
Each participant has a copy of the ledger to every Hyperledger Fabric network they belong to.

The world state component describes the state of the ledger at a given point in time. It’s the database of the ledger. The
transaction log component records all transactions which have resulted in the current value of the world state; it’s the
update history for the world state. The ledger, then, is a combination of the world state database and the transaction
log history.

The ledger has a replaceable data store for the world state. By default, this is a LevelDB key-value store database.
The transaction log does not need to be pluggable. It simply records the before and after values of the ledger database
being used by the blockchain network.

Smart Contracts

Hyperledger Fabric smart contracts are written in chaincode and are invoked by an application external to the
blockchain when that application needs to interact with the ledger. In most cases, chaincode interacts only with
the database component of the ledger, the world state (querying it, for example), and not the transaction log.

Chaincode can be implemented in several programming languages. Currently, Go and Node are supported.
Privacy

Depending on the needs of a network, participants in a Business-to-Business (B2B) network might be extremely
sensitive about how much information they share. For other networks, privacy will not be a top concern.

Hyperledger Fabric supports networks where privacy (using channels) is a key operational requirement as well as
networks that are comparatively open.

Consensus

Transactions must be written to the ledger in the order in which they occur, even though they might be between
different sets of participants within the network. For this to happen, the order of transactions must be established and a
method for rejecting bad transactions that have been inserted into the ledger in error (or maliciously) must be put into
place.

This is a thoroughly researched area of computer science, and there are many ways to achieve it, each with different
trade-offs. For example, PBFT (Practical Byzantine Fault Tolerance) can provide a mechanism for file replicas to
communicate with each other to keep each copy consistent, even in the event of corruption. Alternatively, in Bitcoin,
ordering happens through a process called mining where competing computers race to solve a cryptographic puzzle
which defines the order that all processes subsequently build upon.

Hyperledger Fabric has been designed to allow network starters to choose a consensus mechanism that best represents
the relationships that exist between participants. As with privacy, there is a spectrum of needs; from networks that are
highly structured in their relationships to those that are more peer-to-peer.

We’ll learn more about the Hyperledger Fabric consensus mechanisms, which currently include SOLO and Kafka.

4.1. Introduction 19

hyperledger-fabricdocs Documentation, Release master

4.1.4 Where can | learn more?

* Identity (conceptual documentation)

A conceptual doc that will take you through the critical role identities play in a Fabric network (using an established
PKI structure and x.509 certificates).

* Membership (conceptual documentation)

Talks through the role of a Membership Service Provider (MSP), which converts identities into roles in a Fabric
network.

* Peers (conceptual documentation)

Peers — owned by organizations — host the ledger and smart contracts and make up the physical structure of a Fabric
network.

e Building Your First Network (tutorial)

Learn how to download Fabric binaries and bootstrap your own sample network with a sample script. Then tear down
the network and learn how it was constructed one step at a time.

» Writing Your First Application (tutorial)

Deploys a very simple network — even simpler than Build Your First Network — to use with a simple smart contract
and application.

* Transaction Flow
A high level look at a sample transaction flow.
* Hyperledger Fabric Model

A high level look at some of components and concepts brought up in this introduction as well as a few others and
describes how they work together in a sample transaction flow.

4.2 Hyperledger Fabric Functionalities

Hyperledger Fabric is an implementation of distributed ledger technology (DLT) that delivers enterprise-ready net-
work security, scalability, confidentiality and performance, in a modular blockchain architecture. Hyperledger Fabric
delivers the following blockchain network functionalities:

4.2.1 ldentity management

To enable permissioned networks, Hyperledger Fabric provides a membership identity service that manages user IDs
and authenticates all participants on the network. Access control lists can be used to provide additional layers of
permission through authorization of specific network operations. For example, a specific user ID could be permitted
to invoke a chaincode application, but be blocked from deploying new chaincode.

4.2.2 Privacy and confidentiality

Hyperledger Fabric enables competing business interests, and any groups that require private, confidential transac-
tions, to coexist on the same permissioned network. Private channels are restricted messaging paths that can be used
to provide transaction privacy and confidentiality for specific subsets of network members. All data, including trans-
action, member and channel information, on a channel are invisible and inaccessible to any network members not
explicitly granted access to that channel.

20 Chapter 4. Key Concepts

identity/identity.html
membership/membership.html
peers/peers.html

hyperledger-fabricdocs Documentation, Release master

4.2.3 Efficient processing

Hyperledger Fabric assigns network roles by node type. To provide concurrency and parallelism to the network,
transaction execution is separated from transaction ordering and commitment. Executing transactions prior to ordering
them enables each peer node to process multiple transactions simultaneously. This concurrent execution increases
processing efficiency on each peer and accelerates delivery of transactions to the ordering service.

In addition to enabling parallel processing, the division of labor unburdens ordering nodes from the demands of
transaction execution and ledger maintenance, while peer nodes are freed from ordering (consensus) workloads. This
bifurcation of roles also limits the processing required for authorization and authentication; all peer nodes do not have
to trust all ordering nodes, and vice versa, so processes on one can run independently of verification by the other.

4.2.4 Chaincode functionality

Chaincode applications encode logic that is invoked by specific types of transactions on the channel. Chaincode that
defines parameters for a change of asset ownership, for example, ensures that all transactions that transfer ownership
are subject to the same rules and requirements. System chaincode is distinguished as chaincode that defines operating
parameters for the entire channel. Lifecycle and configuration system chaincode defines the rules for the channel;
endorsement and validation system chaincode defines the requirements for endorsing and validating transactions.

4.2.5 Modular design

Hyperledger Fabric implements a modular architecture to provide functional choice to network designers. Specific
algorithms for identity, ordering (consensus) and encryption, for example, can be plugged in to any Hyperledger
Fabric network. The result is a universal blockchain architecture that any industry or public domain can adopt, with
the assurance that its networks will be interoperable across market, regulatory and geographic boundaries.

4.3 Hyperledger Fabric Model

This section outlines the key design features woven into Hyperledger Fabric that fulfill its promise of a comprehensive,
yet customizable, enterprise blockchain solution:

* Assets — Asset definitions enable the exchange of almost anything with monetary value over the network, from
whole foods to antique cars to currency futures.

e Chaincode — Chaincode execution is partitioned from transaction ordering, limiting the required levels of trust
and verification across node types, and optimizing network scalability and performance.

» Ledger Features — The immutable, shared ledger encodes the entire transaction history for each channel, and
includes SQL-like query capability for efficient auditing and dispute resolution.

e Privacy — Channels and private data collections enable private and confidential multi-lateral transactions that
are usually required by competing businesses and regulated industries that exchange assets on a common net-
work.

o Security & Membership Services — Permissioned membership provides a trusted blockchain network, where
participants know that all transactions can be detected and traced by authorized regulators and auditors.

* Consensus — A unique approach to consensus enables the flexibility and scalability needed for the enterprise.

4.3. Hyperledger Fabric Model 21

hyperledger-fabricdocs Documentation, Release master

4.3.1 Assets

Assets can range from the tangible (real estate and hardware) to the intangible (contracts and intellectual property).
Hyperledger Fabric provides the ability to modify assets using chaincode transactions.

Assets are represented in Hyperledger Fabric as a collection of key-value pairs, with state changes recorded as trans-
actions on a Channel ledger. Assets can be represented in binary and/or JSON form.

You can easily define and use assets in your Hyperledger Fabric applications using the Hyperledger Composer tool.

4.3.2 Chaincode

Chaincode is software defining an asset or assets, and the transaction instructions for modifying the asset(s); in other
words, it’s the business logic. Chaincode enforces the rules for reading or altering key-value pairs or other state
database information. Chaincode functions execute against the ledger’s current state database and are initiated through
a transaction proposal. Chaincode execution results in a set of key-value writes (write set) that can be submitted to the
network and applied to the ledger on all peers.

4.3.3 Ledger Features

The ledger is the sequenced, tamper-resistant record of all state transitions in the fabric. State transitions are a result
of chaincode invocations (‘transactions’) submitted by participating parties. Each transaction results in a set of asset
key-value pairs that are committed to the ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in blocks, as well as a state
database to maintain current fabric state. There is one ledger per channel. Each peer maintains a copy of the ledger
for each channel of which they are a member.

Some features of a Fabric ledger:
* Query and update ledger using key-based lookups, range queries, and composite key queries
* Read-only queries using a rich query language (if using CouchDB as state database)
* Read-only history queries — Query ledger history for a key, enabling data provenance scenarios

* Transactions consist of the versions of keys/values that were read in chaincode (read set) and keys/values that
were written in chaincode (write set)

 Transactions contain signatures of every endorsing peer and are submitted to ordering service
* Transactions are ordered into blocks and are “delivered” from an ordering service to peers on a channel
 Peers validate transactions against endorsement policies and enforce the policies

¢ Prior to appending a block, a versioning check is performed to ensure that states for assets that were read have
not changed since chaincode execution time

* There is immutability once a transaction is validated and committed

* A channel’s ledger contains a configuration block defining policies, access control lists, and other pertinent
information

e Channels contain Membership Service Provider instances allowing for crypto materials to be derived from
different certificate authorities

See the ledger topic for a deeper dive on the databases, storage structure, and “query-ability.”

22 Chapter 4. Key Concepts

https://github.com/hyperledger/composer

hyperledger-fabricdocs Documentation, Release master

4.3.4 Privacy

Hyperledger Fabric employs an immutable ledger on a per-channel basis, as well as chaincode that can manipulate
and modify the current state of assets (i.e. update key-value pairs). A ledger exists in the scope of a channel — it can
be shared across the entire network (assuming every participant is operating on one common channel) — or it can be
privatized to include only a specific set of participants.

In the latter scenario, these participants would create a separate channel and thereby isolate/segregate their transactions
and ledger. In order to solve scenarios that want to bridge the gap between total transparency and privacy, chaincode
can be installed only on peers that need to access the asset states to perform reads and writes (in other words, if a
chaincode is not installed on a peer, it will not be able to properly interface with the ledger).

When a subset of organizations on that channel need to keep their transaction data confidential, a private data collection
(collection) is used to segregate this data in a private database, logically separate from the channel ledger, accessible
only to the authorized subset of organizations.

Thus, channels keep transactions private from the broader network whereas collections keep data private between
subsets of organizations on the channel.

To further obfuscate the data, values within chaincode can be encrypted (in part or in total) using common cryp-
tographic algorithms such as AES before sending transactions to the ordering service and appending blocks to the
ledger. Once encrypted data has been written to the ledger, it can be decrypted only by a user in possession of the
corresponding key that was used to generate the cipher text. For further details on chaincode encryption, see the
Chaincode for Developers topic.

See the Private Data topic for more details on how to achieve privacy on your blockchain network.

4.3.5 Security & Membership Services

Hyperledger Fabric underpins a transactional network where all participants have known identities. Public Key Infras-
tructure is used to generate cryptographic certificates which are tied to organizations, network components, and end
users or client applications. As a result, data access control can be manipulated and governed on the broader network
and on channel levels. This “permissioned” notion of Hyperledger Fabric, coupled with the existence and capabilities
of channels, helps address scenarios where privacy and confidentiality are paramount concerns.

See the Membership Service Providers (MSP) topic to better understand cryptographic implementations, and the sign,
verify, authenticate approach used in Hyperledger Fabric.

4.3.6 Consensus

In distributed ledger technology, consensus has recently become synonymous with a specific algorithm, within a
single function. However, consensus encompasses more than simply agreeing upon the order of transactions, and
this differentiation is highlighted in Hyperledger Fabric through its fundamental role in the entire transaction flow,
from proposal and endorsement, to ordering, validation and commitment. In a nutshell, consensus is defined as the
full-circle verification of the correctness of a set of transactions comprising a block.

Consensus is achieved ultimately when the order and results of a block’s transactions have met the explicit policy
criteria checks. These checks and balances take place during the lifecycle of a transaction, and include the usage of
endorsement policies to dictate which specific members must endorse a certain transaction class, as well as system
chaincodes to ensure that these policies are enforced and upheld. Prior to commitment, the peers will employ these
system chaincodes to make sure that enough endorsements are present, and that they were derived from the appropriate
entities. Moreover, a versioning check will take place during which the current state of the ledger is agreed or consented
upon, before any blocks containing transactions are appended to the ledger. This final check provides protection against
double spend operations and other threats that might compromise data integrity, and allows for functions to be executed
against non-static variables.

4.3. Hyperledger Fabric Model 23

hyperledger-fabricdocs Documentation, Release master

In addition to the multitude of endorsement, validity and versioning checks that take place, there are also ongoing
identity verifications happening in all directions of the transaction flow. Access control lists are implemented on
hierarchical layers of the network (ordering service down to channels), and payloads are repeatedly signed, verified and
authenticated as a transaction proposal passes through the different architectural components. To conclude, consensus
is not merely limited to the agreed upon order of a batch of transactions; rather, it is an overarching characterization
that is achieved as a byproduct of the ongoing verifications that take place during a transaction’s journey from proposal
to commitment.

Check out the Transaction Flow diagram for a visual representation of consensus.

4.4 Blockchain network

This topic will describe, at a conceptual level, how Hyperledger Fabric allows organizations to collaborate in the
formation of blockchain networks. If you’re an architect, administrator or developer, you can use this topic to get a
solid understanding of the major structure and process components in a Hyperledger Fabric blockchain network. This
topic will use a manageable worked example that introduces all of the major components in a blockchain network.
After understanding this example you can read more detailed information about these components elsewhere in the
documentation, or try building a sample network.

After reading this topic and understanding the concept of policies, you will have a solid understanding of the decisions
that organizations need to make to establish the policies that control a deployed Hyperledger Fabric network. You’ll
also understand how organizations manage network evolution using declarative policies — a key feature of Hyperledger
Fabric. In a nutshell, you’ll understand the major technical components of Hyperledger Fabric and the decisions
organizations need to make about them.

4.4.1 What is a blockchain network?

A blockchain network is a technical infrastructure that provides ledger and smart contract (chaincode) services to
applications. Primarily, smart contracts are used to generate transactions which are subsequently distributed to every
peer node in the network where they are immutably recorded on their copy of the ledger. The users of applications
might be end users using client applications or blockchain network administrators.

In most cases, multiple organizations come together as a consortium to form the network and their permissions are
determined by a set of policies that are agreed by the consortium when the network is originally configured. Moreover,
network policies can change over time subject to the agreement of the organizations in the consortium, as we’ll discover
when we discuss the concept of modification policy.

4.4.2 The sample network

Before we start, let’s show you what we’re aiming at! Here’s a diagram representing the final state of our sample
network.

Don’t worry that this might look complicated! As we go through this topic, we will build up the network piece by
piece, so that you see how the organizations R1, R2, R3 and R4 contribute infrastructure to the network to help form
it. This infrastructure implements the blockchain network, and it is governed by policies agreed by the organizations
who form the network — for example, who can add new organizations. You’ll discover how applications consume the
ledger and smart contract services provided by the blockchain network.

24 Chapter 4. Key Concepts

../build_network.html
../glossary.html#organization
../glossary.html#consortium
../glossary.html#policy

hyperledger-fabricdocs Documentation, Release master

1

e

Four organizations, R1, R2, R3 and R4 have jointly decided, and written into an agreement, that they will set up and
exploit a Hyperledger Fabric network. R4 has been assigned to be the network initiator — it has been given the power
to set up the initial version of the network. R4 has no intention to perform business transactions on the network. Rl
and R2 have a need for a private communications within the overall network, as do R2 and R3. Organization R1 has a
client application that can perform business transactions within channel C1. Organization R2 has a client application
that can do similar work both in channel C1 and C2. Organization R3 has a client application that can do this on
channel C2. Peer node Pl maintains a copy of the ledger LI associated with Cl. Peer node P2 maintains a copy of
the ledger L1 associated with C1 and a copy of ledger L2 associated with C2. Peer node P3 maintains a copy of the
ledger L2 associated with C2. The network is governed according to policy rules specified in network configuration
NC4, the network is under the control of organizations R1 and R4. Channel CI is governed according to the policy
rules specified in channel configuration CC1; the channel is under the control of organizations R1 and R2. Channel
C2 is governed according to the policy rules specified in channel configuration CC2; the channel is under the control
of organizations R2 and R3. There is an ordering service O4 that services as a network administration point for N,
and uses the system channel. The ordering service also supports application channels C1 and C2, for the purposes of
transaction ordering into blocks for distribution. Each of the four organizations has a preferred Certificate Authority.

4.4.3 Creating the Network

Let’s start at the beginning by creating the basis for the network:

4.4. Blockchain network 25

hyperledger-fabricdocs Documentation, Release master

CA4

N

The network is formed when an orderer is started. In our example network, N, the ordering service comprising a single
node, O4, is configured according to a network configuration NC4, which gives administrative rights to organization
R4. At the network level, Certificate Authority CA4 is used to dispense identities to the administrators and network
nodes of the R4 organization.

We can see that the first thing that defines a network, N, is an ordering service, O4. It’s helpful to think of the
ordering service as the initial administration point for the network. As agreed beforehand, O4 is initially configured
and started by an administrator in organization R4, and hosted in R4. The configuration NC4 contains the policies that
describe the starting set of administrative capabilities for the network. Initially this is set to only give R4 rights over
the network. This will change, as we’ll see later, but for now R4 is the only member of the network.

Certificate Authorities

You can also see a Certificate Authority, CA4, which is used to issue certificates to administrators and network nodes.
CAA4 plays a key role in our network because it dispenses X.509 certificates that can be used to identify components
as belonging to organization R4. Certificates issued by CAs can also be used to sign transactions to indicate that an
organization endorses the transaction result — a precondition of it being accepted onto the ledger. Let’s examine these
two aspects of a CA in a little more detail.

Firstly, different components of the blockchain network use certificates to identify themselves to each other as being
from a particular organization. That’s why there is usually more than one CA supporting a blockchain network — dif-
ferent organizations often use different CAs. We’re going to use four CAs in our network; one of for each organization.
Indeed, CAs are so important that Hyperledger Fabric provides you with a built-in one (called Fabric-CA) to help you
get going, though in practice, organizations will choose to use their own CA.

The mapping of certificates to member organizations is achieved by via a structure called a Membership Services
Provider (MSP). Network configuration NC4 uses a named MSP to identify the properties of certificates dispensed by
CA4 which associate certificate holders with organization R4. NC4 can then use this MSP name in policies to grant
actors from R4 particular rights over network resources. An example of such a policy is to identify the administrators
in R4 who can add new member organizations to the network. We don’t show MSPs on these diagrams, as they would
just clutter them up, but they are very important.

Secondly, we’ll see later how certificates issued by CAs are at the heart of the transaction generation and validation
process. Specifically, X.509 certificates are used in client application transaction proposals and smart contract trans-
action responses to digitally sign transactions. Subsequently the network nodes who host copies of the ledger verify
that transaction signatures are valid before accepting transactions onto the ledger.

26 Chapter 4. Key Concepts

../glossary.html#membership-services
../glossary.html#membership-services
../glossary.html#transaction
../glossary.html#proposal
../glossary.html#response
../glossary.html#response
../glossary.html#transaction

hyperledger-fabricdocs Documentation, Release master

Let’s recap the basic structure of our example blockchain network. There’s a resource, the network N, accessed by a
set of users defined by a Certificate Authority CA4, who have a set of rights over the resources in the network N as
described by policies contained inside a network configuration NC4. All of this is made real when we configure and
start the ordering service node O4.

4.4.4 Adding Network Administrators

NC4 was initially configured to only allow R4 users administrative rights over the network. In this next phase, we are
going to allow organization R1 users to administer the network. Let’s see how the network evolves:

- B

CA4

AN Y

Organization R4 updates the network configuration to make organization R1 an administrator too. After this point R1
and R4 have equal rights over the network configuration.

We see the addition of a new organization R1 as an administrator — R1 and R4 now have equal rights over the net-
work. We can also see that certificate authority CA1 has been added — it can be used to identify users from the R1
organization. After this point, users from both R1 and R4 can administer the network.

Although the orderer node, O4, is running on R4’s infrastructure, R1 has shared administrative rights over it, as long
as it can gain network access. It means that R1 or R4 could update the network configuration NC4 to allow the R2
organization a subset of network operations. In this way, even though R4 is running the ordering service, and R1 has
full administrative rights over it, R2 has limited rights to create new consortia.

In its simplest form, the ordering service is a single node in the network, and that’s what you can see in the example.
Ordering services are usually multi-node, and can be configured to have different nodes in different organizations. For
example, we might run O4 in R4 and connect it to O2, a separate orderer node in organization R1. In this way, we
would have a multi-site, multi-organization administration structure.

We’ll discuss the ordering service a little more [ater in this topic, but for now just think of the ordering service as an
administration point which provides different organizations controlled access to the network.

4.4.5 Defining a Consortium

Although the network can now be administered by R1 and R4, there is very little that can be done. The first thing we
need to do is define a consortium. This word literally means “a group with a shared destiny”, so it’s an appropriate
choice for a set of organizations in a blockchain network.

Let’s see how a consortium is defined:

4.4. Blockchain network 27

hyperledger-fabricdocs Documentation, Release master

/

BE Y

A network administrator defines a consortium X1 that contains two members, the organizations RI and R2. This
consortium definition is stored in the network configuration NC4, and will be used at the next stage of network devel-
opment. CAl and CA?2 are the respective Certificate Authorities for these organizations.

Because of the way NC4 is configured, only R1 or R4 can create new consortia. This diagram shows the addition of
a new consortium, X1, which defines R1 and R2 as its constituting organizations. We can also see that CA2 has been
added to identify users from R2. Note that a consortium can have any number of organizational members — we have
just shown two as it is the simplest configuration.

Why are consortia important? We can see that a consortium defines the set of organizations in the network who share
a need to transact with one another — in this case R1 and R2. It really makes sense to group organizations together if
they have a common goal, and that’s exactly what’s happening.

The network, although started by a single organization, is now controlled by a larger set of organizations. We could
have started it this way, with R1, R2 and R4 having shared control, but this build up makes it easier to understand.

We’re now going to use consortium X1 to create a really important part of a Hyperledger Fabric blockchain — a
channel.

4.4.6 Creating a channel for a consortium

So let’s create this key part of the Fabric blockchain network — a channel. A channel is a primary communications
mechanism by which the members of a consortium can communicate with each other. There can be multiple channels
in a network, but for now, we’ll start with one.

Let’s see how the first channel has been added to the network:

28 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

C_ c1

CA4

B8

A channel C1 has been created for RI and R2 using the consortium definition X1. The channel is governed by a
channel configuration CCI, completely separate to the network configuration. CCI is managed by R1 and R2 who
have equal rights over C1. R4 has no rights in CC1 whatsoever.

The channel C1 provides a private communications mechanism for the consortium X1. We can see channel C1 has been
connected to the ordering service O4 but that nothing else is attached to it. In the next stage of network development,
we’re going to connect components such as client applications and peer nodes. But at this point, a channel represents
the potential for future connectivity.

Even though channel C1 is a part of the network N, it is quite distinguishable from it. Also notice that organizations
R3 and R4 are not in this channel — it is for transaction processing between R1 and R2. In the previous step, we saw
how R4 could grant R1 permission to create new consortia. It’s helpful to mention that R4 also allowed R1 to create
channels! In this diagram, it could have been organization R1 or R4 who created a channel C1. Again, note that a
channel can have any number of organizations connected to it — we’ve shown two as it’s the simplest configuration.

Again, notice how channel C1 has a completely separate configuration, CC1, to the network configuration NC4. CCl1
contains the policies that govern the rights that R1 and R2 have over the channel C1 — and as we’ve seen, R3 and
R4 have no permissions in this channel. R3 and R4 can only interact with C1 if they are added by R1 or R2 to the
appropriate policy in the channel configuration CC1. An example is defining who can add a new organization to the
channel. Specifically, note that R4 cannot add itself to the channel C1 — it must, and can only, be authorized by R1 or
R2.

Why are channels so important? Channels are useful because they provide a mechanism for private communications
and private data between the members of a consortium. Channels provide privacy from other channels, and from the
network. Hyperledger Fabric is powerful in this regard, as it allows organizations to share infrastructure and keep it
private at the same time. There’s no contradiction here — different consortia within the network will have a need for
different information and processes to be appropriately shared, and channels provide an efficient mechanism to do this.
Channels provide an efficient sharing of infrastructure while maintaining data and communications privacy.

We can also see that once a channel has been created, it is in a very real sense “free from the network”. It is only
organizations that are explicitly specified in a channel configuration that have any control over it, from this time
forward into the future. Likewise, any updates to network configuration NC4 from this time onwards will have no direct
effect on channel configuration CC1; for example if consortia definition X1 is changed, it will not affect the members
of channel C1. Channels are therefore useful because they allow private communications between the organizations
constituting the channel. Moreover, the data in a channel is completely isolated from the rest of the network, including
other channels.

As an aside, there is also a special system channel defined for use by the ordering service. It behaves in exactly the

4.4. Blockchain network 29

hyperledger-fabricdocs Documentation, Release master

same way as a regular channel, which are sometimes called application channels for this reason. We don’t normally
need to worry about this channel, but we’ll discuss a little bit more about it later in this topic.

4.4.7 Peers and Ledgers

Let’s now start to use the channel to connect the blockchain network and the organizational components together. In
the next stage of network development, we can see that our network N has just acquired two new components, namely
a peer node P1 and a ledger instance, L1.

< C1

L4
B8 - Y

A peer node P1 has joined the channel C1. P1 physically hosts a copy of the ledger L1. Pl and O4 can communicate
with each other using channel C1I.

Peer nodes are the network components where copies of the blockchain ledger are hosted! At last, we’re starting to
see some recognizable blockchain components! P1’s purpose in the network is purely to host a copy of the ledger L1
for others to access. We can think of L1 as being physically hosted on P1, but logically hosted on the channel C1.
We’ll see this idea more clearly when we add more peers to the channel.

A key part of a P1’s configuration is an X.509 identity issued by CA1 which associates P1 with organization R1. Once
P1 is started, it can join channel C1 using the orderer O4. When O4 receives this join request, it uses the channel
configuration CCI to determine P1’s permissions on this channel. For example, CC1 determines whether P1 can read
and/or write information to the ledger L1.

Notice how peers are joined to channels by the organizations that own them, and though we’ve only added one peer,
we’ll see how there can be multiple peer nodes on multiple channels within the network. We’ll see the different roles
that peers can take on a little later.

4.4.8 Applications and Smart Contract chaincode

Now that the channel C1 has a ledger on it, we can start connecting client applications to consume some of the services
provided by workhorse of the ledger, the peer!

Notice how the network has grown:

30 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

— @
\
e

— Cl

CA4

8

2 AN

A smart contract S5 has been installed onto P1. Client application Al in organization Rl can use S5 to access the
ledger via peer node P1. Al, P1 and O4 are all joined to channel C1, i.e. they can all make use of the communication
facilities provided by that channel.

In the next stage of network development, we can see that client application Al can use channel CI to connect to
specific network resources — in this case Al can connect to both peer node P1 and orderer node O4. Again, see how
channels are central to the communication between network and organization components. Just like peers and orderers,
a client application will have an identity that associates it with an organization. In our example, client application Al
is associated with organization R1; and although it is outside the Fabric blockchain network, it is connected to it via
the channel C1.

It might now appear that Al can access the ledger L1 directly via P1, but in fact, all access is managed via a special
program called a smart contract chaincode, S5. Think of S5 as defining all the common access patterns to the ledger;
S5 provides a well-defined set of ways by which the ledger L1 can be queried or updated. In short, client application
Al has to go through smart contract S5 to get to ledger L1!

Smart contract chaincodes can be created by application developers in each organization to implement a business
process shared by the consortium members. Smart contracts are used to help generate transactions which can be
subsequently distributed to the every node in the network. We’ll discuss this idea a little later; it’ll be easier to
understand when the network is bigger. For now, the important thing to understand is that to get to this point two
operations must have been performed on the smart contract; it must have been installed, and then instantiated.

Installing a smart contract

After a smart contract S5 has been developed, an administrator in organization R1 must install it onto peer node
P1. This is a straightforward operation; after it has occurred, P1 has full knowledge of S5. Specifically, P1 can see
the implementation logic of S5 — the program code that it uses to access the ledger L1. We contrast this to the S5
interface which merely describes the inputs and outputs of S5, without regard to its implementation.

When an organization has multiple peers in a channel, it can choose the peers upon which it installs smart contracts; it
does not need to install a smart contract on every peer.

Instantiating a smart contract

However, just because P1 has installed S5, the other components connected to channel C1 are unaware of it; it must first
be instantiated on channel C1. In our example, which only has a single peer node P1, an administrator in organization

4.4. Blockchain network 31

../glossary.html#install
../glossary.html#instantiate

hyperledger-fabricdocs Documentation, Release master

R1 must instantiate S5 on channel C1 using P1. After instantiation, every component on channel C1 is aware of the
existence of S5; and in our example it means that S5 can now be invoked by client application A1!

Note that although every component on the channel can now access S5, they are not able to see its program logic. This
remains private to those nodes who have installed it; in our example that means P1. Conceptually this means that it’s
the smart contract interface that is instantiated, in contrast to the smart contract implementation that is installed. To
reinforce this idea; installing a smart contract shows how we think of it being physically hosted on a peer, whereas
instantiating a smart contract shows how we consider it logically hosted by the channel.

Endorsement policy

The most important piece of additional information supplied at instantiation is an endorsement policy. It describes
which organizations must approve transactions before they will be accepted by other organizations onto their copy of
the ledger. In our sample network, transactions can be only be accepted onto ledger L1 if R1 or R2 endorse them.

The act of instantiation places the endorsement policy in channel configuration CC1; it enables it to be accessed by
any member of the channel. You can read more about endorsement policies in the transaction flow topic.

Invoking a smart contract

Once a smart contract has been installed on a peer node and instantiated on a channel it can be invoked by a client
application. Client applications do this by sending transaction proposals to peers owned by the organizations specified
by the smart contract endorsement policy. The transaction proposal serves as input to the smart contract, which uses it
to generate an endorsed transaction response, which is returned by the peer node to the client application.

It’s these transactions responses that are packaged together with the transaction proposal to form a fully endorsed
transaction, which can be distributed to the entire network. We’ll look at this in more detail later For now, it’s enough
to understand how applications invoke smart contracts to generate endorsed transactions.

By this stage in network development we can see that organization R1 is fully participating in the network. Its
applications — starting with A1 — can access the ledger L1 via smart contract S5, to generate transactions that will be
endorsed by R1, and therefore accepted onto the ledger because they conform to the endorsement policy.

4.4.9 Network completed

Recall that our objective was to create a channel for consortium X1 — organizations R1 and R2. This next phase of
network development sees organization R2 add its infrastructure to the network.

Let’s see how the network has evolved:

32 Chapter 4. Key Concepts

../glossary.html#invoke
../glossary.html#endorsement-policy
../txflow.html
../glossary.html#invoke

hyperledger-fabricdocs Documentation, Release master

?? LA
.............

EE

The network has grown through the addition of infrastructure from organization R2. Specifically, R2 has added peer
node P2, which hosts a copy of ledger L1, and chaincode S5. P2 has also joined channel C1, as has application A2.
A2 and P2 are identified using certificates from CA2. All of this means that both applications Al and A2 can invoke
S5 on C1 either using peer node P1 or P2.

We can see that organization R2 has added a peer node, P2, on channel C1. P2 also hosts a copy of the ledger L1
and smart contract S5. We can see that R2 has also added client application A2 which can connect to the network via
channel C1. To achieve this, an administrator in organization R2 has created peer node P2 and joined it to channel C1,
in the same way as an administrator in R1.

We have created our first operational network! At this stage in network development, we have a channel in which
organizations R1 and R2 can fully transact with each other. Specifically, this means that applications Al and A2 can
generate transactions using smart contract S5 and ledger L1 on channel C1.

Generating and accepting transactions

In contrast to peer nodes, which always host a copy of the ledger, we see that there are two different kinds of peer
nodes; those which host smart contracts and those which do not. In our network, every peer hosts a copy of the smart
contract, but in larger networks, there will be many more peer nodes that do not host a copy of the smart contract. A
peer can only run a smart contract if it is installed on it, but it can know about the interface of a smart contract by being
connected to a channel.

You should not think of peer nodes which do not have smart contracts installed as being somehow inferior. It’s more
the case that peer nodes with smart contracts have a special power — to help generate transactions. Note that all peer
nodes can validate and subsequently accept or reject transactions onto their copy of the ledger L1. However, only
peer nodes with a smart contract installed can take part in the process of transaction endorsement which is central to
the generation of valid transactions.

We don’t need to worry about the exact details of how transactions are generated, distributed and accepted in this topic
— it is sufficient to understand that we have a blockchain network where organizations R1 and R2 can share information
and processes as ledger-captured transactions. We’ll learn a lot more about transactions, ledgers, smart contracts in
other topics.

4.4. Blockchain network 33

hyperledger-fabricdocs Documentation, Release master

Types of peers

In Hyperledger Fabric, while all peers are the same, they can assume multiple roles depending on how the network is
configured. We now have enough understanding of a typical network topology to describe these roles.

» Committing peer. Every peer node in a channel is a committing peer. It receives blocks of generated transactions,
which are subsequently validated before they are committed to the peer node’s copy of the ledger as an append
operation.

» Endorsing peer. Every peer with a smart contract can be an endorsing peer if it has a smart contract installed.
However, to actually be an endorsing peer, the smart contract on the peer must be used by a client application to
generate a digitally signed transaction response. The term endorsing peer is an explicit reference to this fact.

An endorsement policy for a smart contract identifies the organizations whose peer should digitally sign a
generated transaction before it can be accepted onto a committing peer’s copy of the ledger.

These are the two major types of peer; there are two other roles a peer can adopt:

* Leader peer. When an organization has multiple peers in a channel, a leader peer is a node which takes respon-
sibility for distributing transactions from the orderer to the other committing peers in the organization. A peer
can choose to participate in static or dynamic leadership selection.

It is helpful, therefore to think of two sets of peers from leadership perspective — those that have static leader
selection, and those with dynamic leader selection. For the static set, zero or more peers can be configured as
leaders. For the dynamic set, one peer will be elected leader by the set. Moreover, in the dynamic set, if a leader
peer fails, then the remaining peers will re-elect a leader.

It means that an organization’s peers can have one or more leaders connected to the ordering service. This can
help to improve resilience and scalability in large networks which process high volumes of transactions.

* Anchor peer. If a peer needs to communicate with a peer in another organization, then it can use one of the
anchor peers defined in the channel configuration for that organization. An organization can have zero or more
anchor peers defined for it, and an anchor peer can help with many different cross-organization communication
scenarios.

Note that a peer can be a committing peer, endorsing peer, leader peer and anchor peer all at the same time! Only the
anchor peer is optional — for all practical purposes there will always be a leader peer and at least one endorsing peer
and at least one committing peer.

Install not instantiate

In a similar way to organization R1, organization R2 must install smart contract S5 onto its peer node, P2. That’s
obvious — if applications Al or A2 wish to use S5 on peer node P2 to generate transactions, it must first be present;
installation is the mechanism by which this happens. At this point, peer node P2 has a physical copy of the smart
contract and the ledger; like P1, it can both generate and accept transactions onto its copy of ledger L1.

However, in contrast to organization R1, organization R2 does not need to instantiate smart contract S5 on channel
C1. That’s because S5 has already been instantiated on the channel by organization R1. Instantiation only needs to
happen once; any peer which subsequently joins the channel knows that smart contract S5 is available to the channel.
This fact reflects the fact that ledger L1 and smart contract really exist in a physical manner on the peer nodes, and a
logical manner on the channel; R2 is merely adding another physical instance of L1 and S5 to the network.

In our network, we can see that channel C1 connects two client applications, two peer nodes and an ordering service.
Since there is only one channel, there is only one logical ledger with which these components interact. Peer nodes P1
and P2 have identical copies of ledger L1. Copies of smart contract S5 will usually be identically implemented using
the same programming language, but if not, they must be semantically equivalent.

34 Chapter 4. Key Concepts

../glossary.html#commitment
../glossary.html#endorsement
../glossary.html#leading-peer
../glossary.html#anchor-peer

hyperledger-fabricdocs Documentation, Release master

We can see that the careful addition of peers to the network can help support increased throughput, stability, and
resilience. For example, more peers in a network will allow more applications to connect to it; and multiple peers in
an organization will provide extra resilience in the case of planned or unplanned outages.

It all means that it is possible to configure sophisticated topologies which support a variety of operational goals — there
is no theoretical limit to how big a network can get. Moreover, the technical mechanism by which peers within an
individual organization efficiently discover and communicate with each other — the gossip protocol — will accommodate
a large number of peer nodes in support of such topologies.

The careful use of network and channel policies allow even large networks to be well-governed. Organizations are free
to add peer nodes to the network so long as they conform to the policies agreed by the network. Network and channel
policies create the balance between autonomy and control which characterizes a de-centralized network.

4.4.10 Simplifying the visual vocabulary

We’re now going to simplify the visual vocabulary used to represent our sample blockchain network. As the size of
the network grows, the lines initially used to help us understand channels will become cumbersome. Imagine how
complicated our diagram would be if we added another peer or client application, or another channel?

That’s what we’re going to do in a minute, so before we do, let’s simplify the visual vocabulary. Here’s a simplified
representation of the network we’ve developed so far:

03 [b o

28 _ W

The diagram shows the facts relating to channel CI in the network N as follows: Client applications Al and A2
can use channel C1 for communication with peers P1 and P2, and orderer O4. Peer nodes Pl and P2 can use the
communication services of channel Cl. Ordering service O4 can make use of the communication services of channel
Cl. Channel configuration CCI applies to channel CI.

\
%

Note that the network diagram has been simplified by replacing channel lines with connection points, shown as blue
circles which include the channel number. No information has been lost. This representation is more scalable be-
cause it eliminates crossing lines. This allows us to more clearly represent larger networks. We’ve achieved this
simplification by focusing on the connection points between components and a channel, rather than the channel itself.

4.4.11 Adding another consortium definition

In this next phase of network development, we introduce organization R3. We’re going to give organizations R2 and
R3 a separate application channel which allows them to transact with each other. This application channel will be

4.4. Blockchain network 35

../gossip.html#gossip-protocol

hyperledger-fabricdocs Documentation, Release master

completely separate to that previously defined, so that R2 and R3 transactions can be kept private to them.

Let’s return to the network level and define a new consortium, X2, for R2 and R3:

-

CA4

o 6 NG B

A network administrator from organization RI or R4 has added a new consortium definition, X2, which includes
organizations R2 and R3. This will be used to define a new channel for X2.

Notice that the network now has two consortia defined: X1 for organizations R1 and R2 and X2 for organizations R2
and R3. Consortium X2 has been introduced in order to be able to create a new channel for R2 and R3.

A new channel can only be created by those organizations specifically identified in the network configuration policy,
NC4, as having the appropriate rights to do so, i.e. R1 or R4. This is an example of a policy which separates
organizations that can manage resources at the network level versus those who can manage resources at the channel
level. Seeing these policies at work helps us understand why Hyperledger Fabric has a sophisticated tiered policy
structure.

In practice, consortium definition X2 has been added to the network configuration NC4. We discuss the exact mechan-
ics of this operation elsewhere in the documentation.

4.4.12 Adding a new channel

Let’s now use this new consortium definition, X2, to create a new channel, C2. To help reinforce your understanding of
the simpler channel notation, we’ve used both visual styles — channel C1 is represented with blue circular end points,
whereas channel C2 is represented with red connecting lines:

36 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

O
1 1

< C2 —

AL

CA4

LB Y

A new channel C2 has been created for R2 and R3 using consortium definition X2. The channel has a channel con-
figuration CC2, completely separate to the network configuration NC4, and the channel configuration CCI. Channel
C2 is managed by R2 and R3 who have equal rights over C2 as defined by a policy in CC2. RI and R4 have no rights
defined in CC2 whatsoever.

/
E

The channel C2 provides a private communications mechanism for the consortium X2. Again, notice how organiza-
tions united in a consortium are what form channels. The channel configuration CC2 now contains the policies that
govern channel resources, assigning management rights to organizations R2 and R3 over channel C2. It is managed
exclusively by R2 and R3; R1 and R4 have no power in channel C2. For example, channel configuration CC2 can
subsequently be updated to add organizations to support network growth, but this can only be done by R2 or R3.

Note how the channel configurations CC1 and CC2 remain completely separate from each other, and completely
separate from the network configuration, NC4. Again we’re seeing the de-centralized nature of a Hyperledger Fabric
network; once channel C2 has been created, it is managed by organizations R2 and R3 independently to other network
elements. Channel policies always remain separate from each other and can only be changed by the organizations
authorized to do so in the channel.

As the network and channels evolve, so will the network and channel configurations. There is a process by which
this is accomplished in a controlled manner — involving configuration transactions which capture the change to these
configurations. Every configuration change results in a new configuration block transaction being generated, and
later in this topic, we’ll see how these blocks are validated and accepted to create updated network and channel
configurations respectively.

Network and channel configurations

Throughout our sample network, we see the importance of network and channel configurations. These configurations
are important because they encapsulate the policies agreed by the network members, which provide a shared reference
for controlling access to network resources. Network and channel configurations also contain facts about the network
and channel composition, such as the name of consortia and its organizations.

For example, when the network is first formed using the ordering service node O4, its behaviour is governed by the
network configuration NC4. The initial configuration of NC4 only contains policies that permit organization R4 to
manage network resources. NC4 is subsequently updated to also allow R1 to manage network resources. Once this
change is made, any administrator from organization R1 or R4 that connects to O4 will have network management
rights because that is what the policy in the network configuration NC4 permits. Internally, each node in the ordering
service records each channel in the network configuration, so that there is a record of each channel created, at the
network level.

4.4. Blockchain network 37

hyperledger-fabricdocs Documentation, Release master

It means that although ordering service node O4 is the actor that created consortia X1 and X2 and channels C1 and
C2, the intelligence of the network is contained in the network configuration NC4 that O4 is obeying. As long as O4
behaves as a good actor, and correctly implements the policies defined in NC4 whenever it is dealing with network
resources, our network will behave as all organizations have agreed. In many ways NC4 can be considered more
important than O4 because, ultimately, it controls network access.

The same principles apply for channel configurations with respect to peers. In our network, P1 and P2 are likewise
good actors. When peer nodes P1 and P2 are interacting with client applications Al or A2 they are each using the
policies defined within channel configuration CC1 to control access to the channel C1 resources.

For example, if A1 wants to access the smart contract chaincode S5 on peer nodes P1 or P2, each peer node uses its
copy of CC1 to determine the operations that Al can perform. For example, A1 may be permitted to read or write data
from the ledger L1 according to policies defined in CC1. We’ll see later the same pattern for actors in channel and its
channel configuration CC2. Again, we can see that while the peers and applications are critical actors in the network,
their behaviour in a channel is dictated more by the channel configuration policy than any other factor.

Finally, it is helpful to understand how network and channel configurations are physically realized. We can see that
network and channel configurations are logically singular — there is one for the network, and one for each channel.
This is important; every component that accesses the network or the channel must have a shared understanding of the
permissions granted to different organizations.

Even though there is logically a single configuration, it is actually replicated and kept consistent by every node that
forms the network or channel. For example, in our network peer nodes P1 and P2 both have a copy of channel
configuration CC1, and by the time the network is fully complete, peer nodes P2 and P3 will both have a copy of
channel configuration CC2. Similarly ordering service node O4 has a copy of the network configuration, but in a
multi-node configuration, every ordering service node will have its own copy of the network configuration.

Both network and channel configurations are kept consistent using the same blockchain technology that is used for
user transactions — but for configuration transactions. To change a network or client configuration, an administrator
must submit a configuration transaction to change the network or channel configuration. It must be signed by the
organizations identified in the appropriate policy as being responsible for configuration change. This policy is called
the mod_policy and we’ll discuss it later.

Indeed, the ordering service nodes operate a mini-blockchain, connected via the system channel we mentioned earlier.
Using the system channel ordering service nodes distribute network configuration transactions. These transactions are
used to co-operatively maintain a consistent copy of the network configuration at each ordering service node. In a
similar way, peer nodes in an application channel can distribute channel configuration transactions. Likewise, these
transactions are used to maintain a consistent copy of the channel configuration at each peer node.

This balance between objects that are logically singular, by being physically distributed is a common pattern in Hy-
perledger Fabric. Objects like network configurations, that are logically single, turn out to be physically replicated
among a set of ordering services nodes for example. We also see it with channel configurations, ledgers, and to
some extent smart contracts which are installed in multiple places but whose interfaces exist logically at the channel
level. It’s a pattern you see repeated time and again in Hyperledger Fabric, and enables Hyperledger Fabric to be both
de-centralized and yet manageable at the same time.

4.4.13 Adding another peer

Now that organization R3 is able to fully participate in channel C2, let’s add its infrastructure components to the
channel. Rather than do this one component at a time, we’re going to add a peer, its local copy of a ledger, a smart
contract and a client application all at once!

Let’s see the network with organization R3’s components added:

38 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

~

Al

-

CA4

o 2 NG

The diagram shows the facts relating to channels C1 and C2 in the network N as follows: Client applications Al and
A2 can use channel C1 for communication with peers P1 and P2, and ordering service O4; client applications A3 can
use channel C2 for communication with peer P3 and ordering service O4. Ordering service O4 can make use of the
communication services of channels Cl and C2. Channel configuration CCI1 applies to channel Cl, CC2 applies to
channel C2.

First of all, notice that because peer node P3 is connected to channel C2, it has a different ledger — L2 — to those peer
nodes using channel C1. The ledger L2 is effectively scoped to channel C2. The ledger L1 is completely separate;
it is scoped to channel C1. This makes sense — the purpose of the channel C2 is to provide private communications
between the members of the consortium X2, and the ledger L2 is the private store for their transactions.

In a similar way, the smart contract S6, installed on peer node P3, and instantiated on channel C2, is used to provide
controlled access to ledger L2. Application A3 can now use channel C2 to invoke the services provided by smart
contract S6 to generate transactions that can be accepted onto every copy of the ledger L2 in the network.

At this point in time, we have a single network that has two completely separate channels defined within it. These
channels provide independently managed facilities for organizations to transact with each other. Again, this is de-
centralization at work; we have a balance between control and autonomy. This is achieved through policies which are
applied to channels which are controlled by, and affect, different organizations.

4.4.14 Joining a peer to multiple channels

In this final stage of network development, let’s return our focus to organization R2. We can exploit the fact that R2 is
a member of both consortia X1 and X2 by joining it to multiple channels:

4.4. Blockchain network 39

hyperledger-fabricdocs Documentation, Release master

oa & ohs

CA4

—
AA - AA
& o= NG - ;

The diagram shows the facts relating to channels CI and C2 in the network N as follows: Client applications Al can
use channel CI for communication with peers P1 and P2, and ordering service O4; client application A2 can use
channel C1 for communication with peers P1 and P2 and channel C2 for communication with peers P2 and P3 and
ordering service O4; client application A3 can use channel C2 for communication with peer P3 and ordering service
O4. Ordering service O4 can make use of the communication services of channels CI1 and C2. Channel configuration
CCI applies to channel C1, CC2 applies to channel C2.

\

AL

We can see that R2 is a special organization in the network, because it is the only organization that is a member of
two application channels! It is able to transact with organization R1 on channel C1, while at the same time it can also
transact with organization R3 on a different channel, C2.

Notice how peer node P2 has smart contract S5 installed for channel C1 and smart contract S6 installed for channel
C2. Peer node P2 is a full member of both channels at the same time via different smart contracts for different ledgers.

This is a very powerful concept — channels provide both a mechanism for the separation of organizations, and a
mechanism for collaboration between organizations. All the while, this infrastructure is provided by, and shared
between, a set of independent organizations.

It is also important to note that peer node P2’s behaviour is controlled very differently depending upon the channel
in which it is transacting. Specifically, the policies contained in channel configuration CC1 dictate the operations
available to P2 when it is transacting in channel C1, whereas it is the policies in channel configuration CC2 that
control P2’s behaviour in channel C2.

Again, this is desirable — R2 and R1 agreed the rules for channel C1, whereas R2 and R3 agreed the rules for channel
C2. These rules were captured in the respective channel policies — they can and must be used by every component in
a channel to enforce correct behaviour, as agreed.

Similarly, we can see that client application A2 is now able to transact on channels C1 and C2. And likewise, it too
will be governed by the policies in the appropriate channel configurations. As an aside, note that client application
A2 and peer node P2 are using a mixed visual vocabulary — both lines and connections. You can see that they are
equivalent; they are visual synonyms.

The ordering service

The observant reader may notice that the ordering service node appears to be a centralized component; it was used to
create the network initially, and connects to every channel in the network. Even though we added R1 and R4 to the
network configuration policy NC4 which controls the orderer, the node was running on R4’s infrastructure. In a world
of de-centralization, this looks wrong!

40 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Don’t worry! Our example network showed the simplest ordering service configuration to help you understand the idea
of a network administration point. In fact, the ordering service can itself too be completely de-centralized! We men-
tioned earlier that an ordering service could be comprised of many individual nodes owned by different organizations,
so let’s see how that would be done in our sample network.

Let’s have a look at a more realistic ordering service node configuration:

CA4

AL

N

A multi-organization ordering service. The ordering service comprises ordering service nodes OI and O4. Ol is
provided by organization RI and node O4 is provided by organization R4. The network configuration NC4 defines
network resource permissions for actors from both organizations R1 and R4.

We can see that this ordering service completely de-centralized — it runs in organization R1 and it runs in organization
R4. The network configuration policy, NC4, permits R1 and R4 equal rights over network resources. Client applica-
tions and peer nodes from organizations R1 and R4 can manage network resources by connecting to either node Ol
or node O4, because both nodes behave the same way, as defined by the policies in network configuration NC4. In
practice, actors from a particular organization tend to use infrastructure provided by their home organization, but that’s
certainly not always the case.

De-centralized transaction distribution

As well as being the management point for the network, the ordering service also provides another key facility — it
is the distribution point for transactions. The ordering service is the component which gathers endorsed transactions
from applications and orders them into transaction blocks, which are subsequently distributed to every peer node in
the channel. At each of these committing peers, transactions are recorded, whether valid or invalid, and their local
copy of the ledger updated appropriately.

Notice how the ordering service node O4 performs a very different role for the channel C1 than it does for the network
N. When acting at the channel level, O4’s role is to gather transactions and distribute blocks inside channel C1. It
does this according to the policies defined in channel configuration CC1. In contrast, when acting at the network
level, O4’s role is to provide a management point for network resources according to the policies defined in network
configuration NC4. Notice again how these roles are defined by different policies within the channel and network
configurations respectively. This should reinforce to you the importance of declarative policy based configuration in
Hyperledger Fabric. Policies both define, and are used to control, the agreed behaviours by each and every member of
a consortium.

We can see that the ordering service, like the other components in Hyperledger Fabric, is a fully de-centralized com-
ponent. Whether acting as a network management point, or as a distributor of blocks in a channel, its nodes can be

4.4. Blockchain network 41

hyperledger-fabricdocs Documentation, Release master

distributed as required throughout the multiple organizations in a network.

Changing policy

Throughout our exploration of the sample network, we’ve seen the importance of the policies to control the behaviour
of the actors in the system. We’ve only discussed a few of the available policies, but there are many that can be
declaratively defined to control every aspect of behaviour. These individual policies are discussed elsewhere in the
documentation.

Most importantly of all, Hyperledger Fabric provides a uniquely powerful policy that allows network and channel
administrators to manage policy change itself! The underlying philosophy is that policy change is a constant, whether
it occurs within or between organizations, or whether it is imposed by external regulators. For example, new or-
ganizations may join a channel, or existing organizations may have their permissions increased or decreased. Let’s
investigate a little more how change policy is implemented in Hyperledger Fabric.

They key point of understanding is that policy change is managed by a policy within the policy itself. The modification
policy, or mod_policy for short, is a first class policy within a network or channel configuration that manages change.
Let’s give two brief examples of how we’ve already used mod_policy can be used to manage change in our network!

The first example was when the network was initially set up. At this time, only organization R4 was allowed to manage
the network. In practice, this was achieved by making R4 the only organization defined in the network configuration
NC4 with permissions to network resources. Moreover, the mod_policy for NC4 only mentioned organization R4 —
only R4 was allowed to change this configuration.

We then evolved the network N to also allow organization R1 to administer the network. R4 did this by adding R1 to
the policies for channel creation and consortium creation. Because of this change, R1 was able to define the consortia
X1 and X2, and create the channels C1 and C2. R1 had equal administrative rights over the channel and consortium
policies in the network configuration.

R4 however, could grant even more power over the network configuration to R1! R4 could add R1 to the mod_policy
such that R1 would be able to manage change of the network policy too.

This second power is much more powerful than the first, because now R1 now has full control over the network con-
figuration NC4! This means that R1 can, in principle remove R4’s management rights from the network. In practice,
R4 would configure the mod_policy such that R4 would need to also approve the change, or that all organizations in
the mod_policy would have to approve the change. There’s lots of flexibility to make the mod_policy as sophisticated
as it needs to be to support whatever change process is required.

This is mod_policy at work — it has allowed the graceful evolution of a basic configuration into a sophisticated one.
All the time this has occurred with the agreement of all organization involved. The mod_policy behaves like every
other policy inside a network or channel configuration; it defines a set of organizations that are allowed to change the
mod_policy itself.

We’ve only scratched the surface of the power of policies and mod_policy in particular in this subsection. It is
discussed at much more length in the policy topic, but for now let’s return to our finished network!

4.4.15 Network fully formed

Let’s recap what our network looks like using a consistent visual vocabulary. We’ve re-organized it slightly using our
more compact visual syntax, because it better accommodates larger topologies:

42 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

%00 g.0p .8

AA AA

@)\ == 468,

In this diagram we see that the Fabric blockchain network consists of two application channels and one ordering
channel. The organizations RI and R4 are responsible for the ordering channel, Rl and R2 are responsible for the
blue application channel while R2 and R3 are responsible for the red application channel. Client applications Al is
an element of organization R1, and CAl is its certificate authority. Note that peer P2 of organization R2 can use the
communication facilities of the blue and the red application channel. Each application channel has its own channel
configuration, in this case CCI and CC2. The channel configuration of the system channel is part of the network
configuration, NC4.

We’re at the end of our conceptual journey to build a sample Hyperledger Fabric blockchain network. We’ve created a
four organization network with two channels and three peer nodes, with two smart contracts and an ordering service.
It is supported by four certificate authorities. It provides ledger and smart contract services to three client applications,
who can interact with it via the two channels. Take a moment to look through the details of the network in the diagram,
and feel free to read back through the topic to reinforce your knowledge, or go to a more detailed topic.

Summary of network components

Here’s a quick summary of the network components we’ve discussed:
* Ledger. One per channel. Comprised of the Blockchain and the World state
e Smart contract (aka chaincode)
* Peer nodes
* Ordering service
* Channel

¢ Certificate Authority

4.4.16 Network summary

In this topic, we’ve seen how different organizations share their infrastructure to provide an integrated Hyperledger
Fabric blockchain network. We’ve seen how the collective infrastructure can be organized into channels that provide
private communications mechanisms that are independently managed. We’ve seen how actors such as client applica-
tions, administrators, peers and orderers are identified as being from different organizations by their use of certificates

4.4. Blockchain network 43

../glossary.html#ledger
../glossary.html#block
../glossary.html#world-state
../glossary.html#smart-contract
../glossary.html#peer
../glossary.html#ordering-service
../glossary.html#channel
../glossary.html#hyperledger-fabric-ca

hyperledger-fabricdocs Documentation, Release master

from their respective certificate authorities. And in turn, we’ve seen the importance of policy to define the agreed
permissions that these organizational actors have over network and channel resources.

4.5 Identity

4.5.1 What is an Identity?

The different actors in a blockchain network include peers, orderers, client applications, administrators and more. Each
of these actors — active elements inside or outside a network able to consume services — has a digital identity encap-
sulated in an X.509 digital certificate. These identities really matter because they determine the exact permissions
over resources and access to information that actors have in a blockchain network.

A digital identity furthermore has some additional attributes that Fabric uses to determine permissions, and it gives
the union of an identity and the associated attributes a special name — principal. Principals are just like userIDs or
grouplDs, but a little more flexible because they can include a wide range of properties of an actor’s identity, such as
the actor’s organization, organizational unit, role or even the actor’s specific identity. When we talk about principals,
they are the properties which determine their permissions.

For an identity to be verifiable, it must come from a trusted authority. A membership service provider (MSP) is
how this is achieved in Fabric. More specifically, an MSP is a component that defines the rules that govern the
valid identities for this organization. The default MSP implementation in Fabric uses X.509 certificates as identities,
adopting a traditional Public Key Infrastructure (PKI) hierarchical model (more on PKI later).

4.5.2 A Simple Scenario to Explain the Use of an Identity

Imagine that you visit a supermarket to buy some groceries. At the checkout you see a sign that says that only Visa,
Mastercard and AMEX cards are accepted. If you try to pay with a different card — let’s call it an “ImagineCard” —
it doesn’t matter whether the card is authentic and you have sufficient funds in your account. It will be not be accepted.

>

0
. Here

—o|[=@
=
e T
-=w - =m
—\
= o —>

Having a valid credit card is not enough — it must also be accepted by the store! PKIs and MSPs work together in the
same way — a PKI provides a list of identities, and an MSP says which of these are members of a given organization
that participates in the network.

PKI certificate authorities and MSPs provide a similar combination of functionalities. A PKI is like a card provider —
it dispenses many different types of verifiable identities. An MSP, on the other hand, is like the list of card providers
accepted by the store, determining which identities are the trusted members (actors) of the store payment network.
MSPs turn verifiable identities into the members of a blockchain network.

Let’s drill into these concepts in a little more detail.

44 Chapter 4. Key Concepts

../membership/membership.html

hyperledger-fabricdocs Documentation, Release master

4.5.3 What are PKls?

A public key infrastructure (PKI) is a collection of internet technologies that provides secure communications
in a network. It’s PKI that puts the S in HTTPS — and if you’re reading this documentation on a web browser, you’re
probably using a PKI to make sure it comes from a verified source.

Certificate
Authority

!

Principal

request certificate

Certificate
. . > — public key
Revocation List issue certificate & = O'I'I'I
L]
Digital
Certificate

- |&=| [4=| [8=] |&=] |8

The elements of Public Key Infrastructure (PKI). A PKI is comprised of Certificate Authorities who issue digital
certificates to parties (e.g., users of a service, service provider), who then use them to authenticate themselves in the
messages they exchange with their environment. A CA’s Certificate Revocation List (CRL) constitutes a reference for
the certificates that are no longer valid. Revocation of a certificate can happen for a number of reasons. For example,
a certificate may be revoked because the cryptographic private material associated to the certificate has been exposed.

Although a blockchain network is more than a communications network, it relies on the PKI standard to ensure
secure communication between various network participants, and to ensure that messages posted on the blockchain are
properly authenticated. It’s therefore important to understand the basics of PKI and then why MSPs are so important.

There are four key elements to PKI:
* Digital Certificates
¢ Public and Private Keys
¢ Certificate Authorities
¢ Certificate Revocation Lists

Let’s quickly describe these PKI basics, and if you want to know more details, Wikipedia is a good place to start.

4.5.4 Digital Certificates

A digital certificate is a document which holds a set of attributes relating to the holder of the certificate. The most
common type of certificate is the one compliant with the X.509 standard, which allows the encoding of a party’s
identifying details in its structure.

For example, Mary Morris in the Manufacturing Division of Mitchell Cars in Detroit, Michigan might have
a digital certificate with a SUBJECT attribute of C=US, ST=Michigan, L=Detroit, O=Mitchell Cars,
OU=Manufacturing, CN=Mary Morris /UID=123456. Mary’s certificate is similar to her government iden-
tity card — it provides information about Mary which she can use to prove key facts about her. There are many other
attributes in an X.509 certificate, but let’s concentrate on just these for now.

4.5. Identity 45

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/X.509

hyperledger-fabricdocs Documentation, Release master

Mary Morris

A digital certificate describing a party called Mary Morris. Mary is the SUBJECT of the certificate, and the high-
lighted SUBJECT text shows key facts about Mary. The certificate also holds many more pieces of information, as you
can see. Most importantly, Mary’s public key is distributed within her certificate, whereas her private signing key is
not. This signing key must be kept private.

What is important is that all of Mary’s attributes can be recorded using a mathematical technique called cryptography
(literally, “secret writing”) so that tampering will invalidate the certificate. Cryptography allows Mary to present her
certificate to others to prove her identity so long as the other party trusts the certificate issuer, known as a Certificate
Authority (CA). As long as the CA keeps certain cryptographic information securely (meaning, its own private
signing key), anyone reading the certificate can be sure that the information about Mary has not been tampered with
— it will always have those particular attributes for Mary Morris. Think of Mary’s X.509 certificate as a digital identity
card that is impossible to change.

4.5.5 Authentication, Public keys, and Private Keys

Authentication and message integrity are important concepts in secure communications. Authentication requires that
parties who exchange messages are assured of the identity that created a specific message. For a message to have
“integrity” means that cannot have been modified during its transmission. For example, you might want to be sure
you’re communicating with the real Mary Morris rather than an impersonator. Or if Mary has sent you a message, you
might want to be sure that it hasn’t been tampered with by anyone else during transmission.

Traditional authentication mechanisms rely on digital signatures that, as the name suggests, allow a party to digitally
sign its messages. Digital signatures also provide guarantees on the integrity of the signed message.

Technically speaking, digital signature mechanisms require each party to hold two cryptographically connected keys:
a public key that is made widely available and acts as authentication anchor, and a private key that is used to produce
digital signatures on messages. Recipients of digitally signed messages can verify the origin and integrity of a
received message by checking that the attached signature is valid under the public key of the expected sender.

The unique relationship between a private key and the respective public key is the cryptographic magic that
makes secure communications possible. The unique mathematical relationship between the keys is such that the
private key can be used to produce a signature on a message that only the corresponding public key can match, and
only on the same message.

46 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Mary Morris

0-|'|'| Mary’s public key
[]

Mary's ®
orMﬁna] —
document
As I was

going to St
Ives, I met
a man with
seven cats}
each cat
had seven
kittens.

Signed version
of document

As I was
going to St
Ives, I met
a man with
seven cats;
each cat
had seven
kittens.

9

Signature

xprzaglr | OFm (X13vRZQql41)
verified as authentic
Tampered using public key
version of
document
Az I was

going to St
Ives, I met
a man with
eight cats;
each cat
had seven
kittens.

X13vRZQql41

®

Signature

(X13vRZQgL41)

incorrect according to
public key

Om

Verifying
Principal

In the example above, Mary uses her private key to sign the message. The signature can be verified by anyone who
sees the signed message using her public key.

4.5.6 Certificate Authorities

As you’ve seen, an actor or a node is able to participate in the blockchain network, via the means of a digital identity
issued for it by an authority trusted by the system. In the most common case, digital identities (or simply identities)
have the form of cryptographically validated digital certificates that comply with X.509 standard and are issued by a
Certificate Authority (CA).

CAs are a common part of internet security protocols, and you’ve probably heard of some of the more popular ones:
Symantec (originally Verisign), GeoTrust, DigiCert, GoDaddy, and Comodo, among others.

p

<

Certificate
Authority

N

)

issue signed
certificates

8=| |4

0= @

®m

A Certificate Authority dispenses certificates to different actors. These certificates are digitally signed by the CA and

4.5. ldentity

47

hyperledger-fabricdocs Documentation, Release master

bind together the actor with the actor’s public key (and optionally with a comprehensive list of properties). As a result,
if one trusts the CA (and knows its public key), it can trust that the specific actor is bound to the public key included in
the certificate, and owns the included attributes, by validating the CA’s signature on the actor’s certificate.

Certificates can be widely disseminated, as they do not include either the actors’ nor the CA’s private keys. As such
they can be used as anchor of trusts for authenticating messages coming from different actors.

CAs also have a certificate, which they make widely available. This allows the consumers of identities issued by a given
CA to verify them by checking that the certificate could only have been generated by the holder of the corresponding
private key (the CA).

In a blockchain setting, every actor who wishes to interact with the network needs an identity. In this setting, you might
say that one or more CAs can be used to define the members of an organization’s from a digital perspective. It’s
the CA that provides the basis for an organization’s actors to have a verifiable digital identity.

Root CAs, Intermediate CAs and Chains of Trust

CAs come in two flavors: Root CAs and Intermediate CAs. Because Root CAs (Symantec, Geotrust, etc) have to
securely distribute hundreds of millions of certificates to internet users, it makes sense to spread this process out
across what are called Intermediate CAs. These Intermediate CAs have their certificates issued by the root CA or
another intermediate authority, allowing the establishment of a “chain of trust” for any certificate that is issued by
any CA in the chain. This ability to track back to the Root CA not only allows the function of CAs to scale while
still providing security — allowing organizations that consume certificates to use Intermediate CAs with confidence
— it limits the exposure of the Root CA, which, if compromised, would endanger the entire chain of trust. If an
Intermediate CA is compromised, on the other hand, there will be a much smaller exposure.

RCA signs ICA1 ICAT signs ICA2 ICAZ2 signs ICA3
. certificate certificate certificate
RCA signs
own m
certificate _

o

Root Intermediate
RCA

I: |}
L=
Yellow certificates Green certificates Blue certificates Grey certificates
signed by RCA signed by ICAL signed by ICA2 signed by ICA3

A chain of trust is established between a Root CA and a set of Intermediate CAs as long as the issuing CA for the
certificate of each of these Intermediate CAs is either the Root CA itself or has a chain of trust to the Root CA.

Intermediate CAs provide a huge amount of flexibility when it comes to the issuance of certificates across multiple
organizations, and that’s very helpful in a permissioned blockchain system (like Fabric). For example, you’ll see that
different organizations may use different Root CAs, or the same Root CA with different Intermediate CAs — it really
does depend on the needs of the network.

48 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Fabric CA

It’s because CAs are so important that Fabric provides a built-in CA component to allow you to create CAs in the
blockchain networks you form. This component — known as Fabric CA is a private root CA provider capable of
managing digital identities of Fabric participants that have the form of X.509 certificates. Because Fabric CA is
a custom CA targeting the Root CA needs of Fabric, it is inherently not capable of providing SSL certificates for
general/automatic use in browsers. However, because some CA must be used to manage identity (even in a test
environment), Fabric CA can be used to provide and manage certificates. It is also possible — and fully appropriate
— to use a public/commerical root or intermediate CA to provide identification.

If you’re interested, you can read a lot more about Fabric CA in the CA documentation section.

4.5.7 Certificate Revocation Lists

A Certificate Revocation List (CRL) is easy to understand — it’s just a list of references to certificates that a CA knows
to be revoked for one reason or another. If you recall the store scenario, a CRL would be like a list of stolen credit
cards.

When a third party wants to verify another party’s identity, it first checks the issuing CA’s CRL to make sure that
the certificate has not been revoked. A verifier doesn’t have to check the CRL, but if they don’t they run the risk of
accepting a compromised identity.

Certificate Validating Impersonating
Authority Principal Principal
present
revoked
certificate

Certificate
Revocation List

!

]
]
]
7y

> |&=| |4=] 4=/ |A=] |&

Using a CRL to check that a certificate is still valid. If an impersonator tries to pass a compromised digital certificate
to a validating party, it can be first checked against the issuing CA’s CRL to make sure it’s not listed as no longer
valid.

Note that a certificate being revoked is very different from a certificate expiring. Revoked certificates have not expired
— they are, by every other measure, a fully valid certificate. For more in-depth information about CRLs, click here.

Now that you’ve seen how a PKI can provide verifiable identities through a chain of trust, the next step is to see how
these identities can be used to represent the trusted members of a blockchain network. That’s where a Membership
Service Provider (MSP) comes into play — it identifies the parties who are the members of a given organization
in the blockchain network.

To learn more about membership, check out the conceptual documentation on MSPs.
an# Membership

If you’ve read through the documentation on identity you’ve seen how a PKI can provide verifiable identities through
a chain of trust. Now let’s see how these identities can be used to represent the trusted members of a blockchain
network.

4.5. Identity 49

http://hyperledger-fabric-ca.readthedocs.io/
https://hyperledger-fabric-ca.readthedocs.io/en/latest/users-guide.html#generating-a-crl-certificate-revocation-list
../membership/membership.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

This is where a Membership Service Provider (MSP) comes into play — it identifies which Root CAs and Inter-
mediate CAs are trusted to define the members of a trust domain, e.g., an organization, either by listing the
identities of their members, or by identifying which CAs are authorized to issue valid identities for their members, or
— as will usually be the case — through a combination of both.

The power of an MSP goes beyond simply listing who is a network participant or member of a channel. An MSP
can identify specific roles an actor might play either within the scope of the organization the MSP represents (e.g.,
admins, or as members of a sub-organization group), and sets the basis for defining access privileges in the context of
a network and channel (e.g., channel admins, readers, writers).

The configuration of an MSP is advertised to all the channels where members of the corresponding organization
participate (in the form of a channel MSP). In addition to the channel MSP, peers, orderers, and clients also maintain
a local MSP to authenticate member messages outside the context of a channel and to define the permissions over a
particular component (who has the ability to install chaincode on a peer, for example).

In addition, an MSP can allow for the identification of a list of identities that have been revoked — as discussed in the
Identity documentation — but we will talk about how that process also extends to an MSP.

We’ll talk more about local and channel MSPs in a moment. For now let’s see what MSPs do in general.

4.6 Mapping MSPs to Organizations

An organization is a managed group of members. This can be something as big as a multinational corporation or a
small as a flower shop. What’s most important about organizations (or orgs) is that they manage their members under
a single MSP. Note that this is different from the organization concept defined in an X.509 certificate, which we’ll talk
about later.

The exclusive relationship between an organization and its MSP makes it sensible to name the MSP after the organi-
zation, a convention you’ll find adopted in most policy configurations. For example, organization ORG1 would likely
have an MSP called something like ORG1-MSP. In some cases an organization may require multiple membership
groups — for example, where channels are used to perform very different business functions between organizations.
In these cases it makes sense to have multiple MSPs and name them accordingly, e.g., ORG2-MSP-NATIONAL and
ORG2-MSP-GOVERNMENT, reflecting the different membership roots of trust within ORG2 in the NATIONAL sales
channel compared to the GOVERNMENT regulatory channel.

Single set of members

ORG2.MSP.NATIONAL Members for national sales

ORG2.MSP.INTERNATIONAL Members for international sales

ORG2.MSP.GOVERNMENT Members for government sales

Two different MSP configurations for an organization. The first configuration shows the typical relationship be-
tween an MSP and an organization — a single MSP defines the list of members of an organization. In the second

50 Chapter 4. Key Concepts

../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

configuration, different MSPs are used to represent different organizational groups with national, international, and
governmental affiliation.

4.6.1 Organizational Units and MSPs

An organization is often divided up into multiple organizational units (OUs), each of which has a certain
set of responsibilities. For example, the ORG1 organization might have both ORG1-MANUFACTURING and
ORG1-DISTRIBUTION OUs to reflect these separate lines of business. When a CA issues X.509 certificates, the OU
field in the certificate specifies the line of business to which the identity belongs.

We’ll see later how OUs can be helpful to control the parts of an organization who are considered to be the members
of a blockchain network. For example, only identities from the ORG1-MANUFACTURING OU might be able to access
a channel, whereas ORG1-DISTRIBUTION cannot.

Finally, though this is a slight misuse of OUs, they can sometimes be used by different organizations in a consortium
to distinguish each other. In such cases, the different organizations use the same Root CAs and Intermediate CAs for
their chain of trust, but assign the OU field to identify members of each organization. We’ll also see how to configure
MSPs to achieve this later.

4.7 Local and Channel MSPs

MSPs appear in two places in a blockchain network: channel configuration (channel MSPs), and locally on an actor’s
premise (local MSP). Local MSPs are defined for clients (users) and for nodes (peers and orderers). Node local
MSPs define the permissions for that node (who the peer admins are, for example). The local MSPs of the users allow
the user side to authenticate itself in its transactions as a member of a channel (e.g. in chaincode transactions), or as
the owner of a specific role into the system (an org admin, for example, in configuration transactions).

Every node and user must have a local MSP defined, as it defines who has administrative or participatory rights at
that level (peer admins will not necessarily be channel admins, and vice versa).

In contrast, channel MSPs define administrative and participatory rights at the channel level. Every organization
participating in a channel must have an MSP defined for it. Peers and orderers on a channel will all share the same
view of channel MSPs, and will therefore be able to correctly authenticate the channel participants. This means that
if an organization wishes to join the channel, an MSP incorporating the chain of trust for the organization’s members
would need to be included in the channel configuration. Otherwise transactions originating from this organization’s
identities will be rejected.

The key difference here between local and channel MSPs is not how they function — both turn identities into roles —
but their scope.

4.7. Local and Channel MSPs 51

hyperledger-fabricdocs Documentation, Release master

\ORGL .MSP \ORG2 .MSP \CRG2.MSP \ORG1.M8P \ORG2.MSP
\RootCAs \RootCAs \RootChAs \RootCAs
RCAZ RCAL RCA2
\ \IntCAs \IntChs \IntCAs
' peer’s local peer’s local 7'y
Local copy of H filesystem filesystem H Local l:opv.of
5 channel policy

channel policy

- c —

*. instantiate i instantiate .

\ORG1.MSP

"""" \BootChs
--------- RCAL

\IntCAs

\ORG2 .MSP
\RootCAs
RCA2
\IntCAs

ORG1.MSP

ORG2.MSP

Global MSPs

Channel policy

Local and channel MSPs. The trust domain (e.g., the organization) of each peer is defined by the peer’s local MSP,
e.g., ORGI or ORG2. Representation of an organization on a channel is achieved by adding the organization’s MSP
to the channel configuration. For example, the channel of this figure is managed by both ORG1 and ORG2. Similar
principles apply for the network, orderers, and users, but these are not shown here for simplicity.

You may find it helpful to see how local and channel MSPs are used by seeing what happens when a blockchain
administrator installs and instantiates a smart contract, as shown in the diagram above.

An administrator B connects to the peer with an identity issued by RCA1 and stored in their local MSP. When B tries to
install a smart contract on the peer, the peer checks its local MSP, ORG1 -MSP, to verify that the identity of B is indeed
a member of ORG1. A successful verification will allow the install command to complete successfully. Subsequently,
B wishes to instantiate the smart contract on the channel. Because this is a channel operation, all organizations on the
channel must agree to it. Therefore, the peer must check the MSPs of the channel before it can successfully commit
this command. (Other things must happen too, but concentrate on the above for now.)

Local MSPs are only defined on the file system of the node or user to which they apply. Therefore, physically and
logically there is only one local MSP per node or user. However, as channel MSPs are available to all nodes in the
channel, they are logically defined once in the channel configuration. However, a channel MSP is also instantiated
on the file system of every node in the channel and kept synchronized via consensus. So while there is a copy of
each channel MSP on the local file system of every node, logically a channel MSP resides on and is maintained by the
channel or the network.

4.8 MSP Levels

The split between channel and local MSPs reflects the needs of organizations to administer their local resources, such
as a peer or orderer nodes, and their channel resources, such as ledgers, smart contracts, and consortia, which operate
at the channel or network level. It’s helpful to think of these MSPs as being at different levels, with MSPs at a
higher level relating to network administration concerns while MSPs at a lower level handle identity for the
administration of private resources. MSPs are mandatory at every level of administration — they must be defined
for the network, channel, peer, orderer, and users.

52 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

(== N\

i1
|

Blockchain Network

\ |
\ /

\ Global MSP " N/

Certificate Authority

Local MSP @ Channel
@ Membership
Services Provider
RCA2 ORGZ.MSP [SEIE - C — 4 b
= eer

ORG1.MSP ch n

Global MSPs \ S
- Orderer

MSP Levels. The MSPs for the peer and orderer are local, whereas the MSPs for a channel (including the network
configuration channel) are shared across all participants of that channel. In this figure, the network configuration
channel is administered by ORG1, but another application channel can be managed by ORGI and ORG2. The peer
is a member of and managed by ORG2, whereas ORGI manages the orderer of the figure. ORGI trusts identities
from RCAI, whereas ORG?2 trusts identities from RCA2. Note that these are administration identities, reflecting who
can administer these components. So while ORGI administers the network, ORG2.MSP does exist in the network
definition.

* Network MSP: The configuration of a network defines who are the members in the network — by defining
the MSPs of the participant organizations — as well as which of these members are authorized to perform
administrative tasks (e.g., creating a channel).

¢ Channel MSP: It is important for a channel to maintain the MSPs of its members separately. A channel provides
private communications between a particular set of organizations which in turn have administrative control over
it. Channel policies interpreted in the context of that channel’s MSPs define who has ability to participate in
certain action on the channel, e.g., adding organizations, or instantiating chaincodes. Note that there is no
necessary relationship between the permission to administrate a channel and the ability to administrate the
network configuration channel (or any other channel). Administrative rights exist within the scope of what is
being administrated (unless the rules have been written otherwise — see the discussion of the ROLE attribute
below).

¢ Peer MSP: This local MSP is defined on the file system of each peer and there is a single MSP instance for
each peer. Conceptually, it performs exactly the same function as channel MSPs with the restriction that it only
applies to the peer where it is defined. An example of an action whose authorization is evaluated using the peer’s
local MSP is the installation of a chaincode on the peer.

* Orderer MSP: Like a peer MSP, an orderer local MSP is also defined on the file system of the node and only
applies to that node. Like peer nodes, orderers are also owned by a single organization and therefore have a
single MSP to list the actors or nodes it trusts.

4.9 MSP Structure

So far, you’ve seen that the most important element of an MSP are the specification of the root or intermediate CAs
that are used to establish an actor’s or node’s membership in the respective organization. There are, however, more
elements that are used in conjunction with these two to assist with membership functions.

4.9. MSP Structure 53

hyperledger-fabricdocs Documentation, Release master

BEA A

=)

o=/ || Oom [R‘li]

Root CAs Organizational Revoked Keystore TLS
Units Certificates (private Intermediate
Intermediate - Signing keys) TLS CAs
CAs Administrators Certificates Root CAs

The figure above shows how a local MSP is stored on a local filesystem. Even though channel MSPs are not physically
structured in exactly this way, it’s still a helpful way to think about them.

As you can see, there are nine elements to an MSP. It’s easiest to think of these elements in a directory structure, where
the MSP name is the root folder name with each subfolder representing different elements of an MSP configuration.

Let’s describe these folders in a little more detail and see why they are important.

* Root CAs: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by the organiza-
tion represented by this MSP. There must be at least one Root CA X.509 certificate in this MSP folder.

This is the most important folder because it identifies the CAs from which all other certificates must be derived
to be considered members of the corresponding organization.

* Intermediate CAs: This folder contains a list of X.509 certificates of the Intermediate CAs trusted by this
organization. Each certificate must be signed by one of the Root CAs in the MSP or by an Intermediate CA
whose issuing CA chain ultimately leads back to a trusted Root CA.

An intermediate CA may represent a different subdivision of the organization (like ORG1-MANUFACTURING
and ORG1-DISTRIBUTION do for ORG1), or the organization itself (as may be the case if a commercial CA
is leveraged for the organization’s identity management). In the latter case intermediate CAs can be used to rep-
resent organization subdivisions. Here you may find more information on best practices for MSP configuration.
Notice, that it is possible to have a functioning network that does not have an Intermediate CA, in which case
this folder would be empty.

Like the Root CA folder, this folder defines the CAs from which certificates must be issued to be considered
members of the organization.

* Organizational Units (OUs): These are listed in the SFABRIC_CFG_PATH/msp/config.yaml file and
contain a list of organizational units, whose members are considered to be part of the organization represented
by this MSP. This is particularly useful when you want to restrict the members of an organization to the ones
holding an identity (signed by one of MSP designated CAs) with a specific OU in it.

Specifying OUs is optional. If no OUs are listed, all the identities that are part of an MSP — as identified by the
Root CA and Intermediate CA folders — will be considered members of the organization.

¢ Administrators: This folder contains a list of identities that define the actors who have the role of administrators
for this organization. For the standard MSP type, there should be one or more X.509 certificates in this list.

It’s worth noting that just because an actor has the role of an administrator it doesn’t mean that they can ad-
minister particular resources! The actual power a given identity has with respect to administering the system
is determined by the policies that manage system resources. For example, a channel policy might specify that

54 Chapter 4. Key Concepts

../msp.html

hyperledger-fabricdocs Documentation, Release master

ORG1-MANUFACTURING administrators have the rights to add new organizations to the channel, whereas the
ORG1-DISTRIBUTION administrators have no such rights.

Even though an X.509 certificate has a ROLE attribute (specifying, for example, that an actor is an admin),
this refers to an actor’s role within its organization rather than on the blockchain network. This is similar to the
purpose of the OU attribute, which — if it has been defined — refers to an actor’s place in the organization.

The ROLE attribute can be used to confer administrative rights at the channel level if the policy for that channel
has been written to allow any administrator from an organization (or certain organizations) permission to per-
form certain channel functions (such as instantiating chaincode). In this way, an organizational role can confer
a network role.

* Revoked Certificates: If the identity of an actor has been revoked, identifying information about the identity
— not the identity itself — is held in this folder. For X.509-based identities, these identifiers are pairs of strings
known as Subject Key Identifier (SKI) and Authority Access Identifier (AKI), and are checked whenever the
X.509 certificate is being used to make sure the certificate has not been revoked.

This list is conceptually the same as a CA’s Certificate Revocation List (CRL), but it also relates to revocation
of membership from the organization. As a result, the administrator of an MSP, local or channel, can quickly
revoke an actor or node from an organization by advertising the updated CRL of the CA the revoked certificate
as issued by. This “list of lists” is optional. It will only become populated as certificates are revoked.

* Node Identity: This folder contains the identity of the node, i.e., cryptographic material that — in combination
to the content of Key St ore — would allow the node to authenticate itself in the messages that is sends to other
participants of its channels and network. For X.509 based identities, this folder contains an X.509 certificate.
This is the certificate a peer places in a transaction proposal response, for example, to indicate that the peer
has endorsed it — which can subsequently be checked against the resulting transaction’s endorsement policy at
validation time.

This folder is mandatory for local MSPs, and there must be exactly one X.509 certificate for the node. It is not
used for channel MSPs.

¢ KeyStore for Private Key: This folder is defined for the local MSP of a peer or orderer node (or in an
client’s local MSP), and contains the node’s signing key. This key matches cryptographically the node’s identity
included in Node Identity folder and is used to sign data — for example to sign a transaction proposal response,
as part of the endorsement phase.

This folder is mandatory for local MSPs, and must contain exactly one private key. Obviously, access to this
folder must be limited only to the identities of users who have administrative responsibility on the peer.

Configuration of a channel MSPs does not include this folder, as channel MSPs solely aim to offer identity
validation functionalities and not signing abilities.

* TLS Root CA: This folder contains a list of self-signed X.509 certificates of the Root CAs trusted by this
organization for TLS communications. An example of a TLS communication would be when a peer needs to
connect to an orderer so that it can receive ledger updates.

MSP TLS information relates to the nodes inside the network — the peers and the orderers, in other words,
rather than the applications and administrations that consume the network.

There must be at least one TLS Root CA X.509 certificate in this folder.

* TLS Intermediate CA: This folder contains a list intermediate CA certificates CAs trusted by the organization
represented by this MSP for TLS communications. This folder is specifically useful when commercial CAs are
used for TLS certificates of an organization. Similar to membership intermediate CAs, specifying intermediate
TLS CAs is optional.

For more information about TLS, click here.

If you’ve read this doc as well as our doc on Identity), you should have a pretty good grasp of how identities and mem-
bership work in Hyperledger Fabric. You’ve seen how a PKI and MSPs are used to identify the actors collaborating in

4.9. MSP Structure 55

../enable_tls.html
../identity/identity.html

hyperledger-fabricdocs Documentation, Release master

a blockchain network. You’ve learned how certificates, public/private keys, and roots of trust work, in addition to how
MSPs are physically and logically structured.

4.10 Peers

A blockchain network is comprised primarily of a set of peer nodes (or, simply, peers). Peers are a fundamental
element of the network because they host ledgers and smart contracts. Recall that a ledger immutably records all
the transactions generated by smart contracts (or chaincode). Smart contracts and ledgers are used to encapsulate the
shared processes and shared information in a network, respectively. These aspects of a peer make them a good starting
point to understand a Hyperledger Fabric network.

Other elements of the blockchain network are of course important: ledgers and smart contracts, orderers, policies,
channels, applications, organizations, identities, and membership, and you can read more about them in their own
dedicated sections. This section focusses on peers, and their relationship to those other elements in a Hyperledger
Fabric network.

@ D

Blockchain
network

Peer node

Smart contract
(aka chaincode)

L1

P3

Ledger

1080

N v

A blockchain network is comprised of peer nodes, each of which can hold copies of ledgers and copies of smart
contracts. In this example, the network N consists of peers P1, P2 and P3, each of which maintain their own instance
of the distributed ledger L1. P1, P2 and P3 use the same chaincode, S1, to access their copy of that distributed ledger.

Peers can be created, started, stopped, reconfigured, and even deleted. They expose a set of APIs that enable admin-
istrators and applications to interact with the services that they provide. We’ll learn more about these services in this
section.

4.10.1 A word on terminology
Hyperledger Fabric implements smart contracts with a technology concept it calls chaincode — simply a piece of

code that accesses the ledger, written in one of the supported programming languages. In this topic, we’ll usually use
the term chaincode, but feel free to read it as smart contract if you’re more used to that term. It’s the same thing!

4.10.2 Ledgers and Chaincode

Let’s look at a peer in a little more detail. We can see that it’s the peer that hosts both the ledger and chaincode.
More accurately, the peer actually hosts instances of the ledger, and instances of chaincode. Note that this provides a

56 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

deliberate redundancy in a Fabric network — it avoids single points of failure. We’ll learn more about the distributed
and decentralized nature of a blockchain network later in this section.

A peer hosts instances of ledgers and instances of chaincodes. In this example, Pl hosts an instance of ledger L1 and
an instance of chaincode S1. There can be many ledgers and chaincodes hosted on an individual peer.

Because a peer is a host for ledgers and chaincodes, applications and administrators must interact with a peer if they
want to access these resources. That’s why peers are considered the most fundamental building blocks of a Hyperledger
Fabric network. When a peer is first created, it has neither ledgers nor chaincodes. We’ll see later how ledgers get
created, and how chaincodes get installed, on peers.

Multiple Ledgers

A peer is able to host more than one ledger, which is helpful because it allows for a flexible system design. The
simplest configuration is for a peer to manage a single ledger, but it’s absolutely appropriate for a peer to host two or
more ledgers when required.

S2

A peer hosting multiple ledgers. Peers host one or more ledgers, and each ledger has zero or more chaincodes that

4.10. Peers 57

hyperledger-fabricdocs Documentation, Release master

apply to them. In this example, we can see that the peer PI hosts ledgers L1 and L2. Ledger LI is accessed using
chaincode S1. Ledger L2 on the other hand can be accessed using chaincodes S1 and S2.

Although it is perfectly possible for a peer to host a ledger instance without hosting any chaincodes which access that
ledger, it’s rare that peers are configured this way. The vast majority of peers will have at least one chaincode installed
on it which can query or update the peer’s ledger instances. It’s worth mentioning in passing that, whether or not users
have installed chaincodes for use by external applications, peers also have special system chaincodes that are always
present. These are not discussed in detail in this topic.

Multiple Chaincodes

There isn’t a fixed relationship between the number of ledgers a peer has and the number of chaincodes that can access
that ledger. A peer might have many chaincodes and many ledgers available to it.

S1 S3

An example of a peer hosting multiple chaincodes. Each ledger can have many chaincodes which access it. In this
example, we can see that peer P1 hosts ledgers L1 and L2, where Ll is accessed by chaincodes S1 and S2, and L2 is
accessed by S1 and S3. We can see that S1 can access both L1 and L2.

We’ll see a little later why the concept of channels in Hyperledger Fabric is important when hosting multiple ledgers
or multiple chaincodes on a peer.

4.10.3 Applications and Peers

We’re now going to show how applications interact with peers to access the ledger. Ledger-query interactions involve
a simple three-step dialogue between an application and a peer; ledger-update interactions are a little more involved,
and require two extra steps. We’ve simplified these steps a little to help you get started with Hyperledger Fabric, but
don’t worry — what’s most important to understand is the difference in application-peer interactions for ledger-query
compared to ledger-update transaction styles.

Applications always connect to peers when they need to access ledgers and chaincodes. The Hyperledger Fabric
Software Development Kit (SDK) makes this easy for programmers — its APIs enable applications to connect to peers,
invoke chaincodes to generate transactions, submit transactions to the network that will get ordered and committed to
the distributed ledger, and receive events when this process is complete.

Through a peer connection, applications can execute chaincodes to query or update a ledger. The result of a ledger
query transaction is returned immediately, whereas ledger updates involve a more complex interaction between appli-
cations, peers and orderers. Let’s investigate this in a little more detail.

58 Chapter 4. Key Concepts

hyperledger-fabricdocs Documentation, Release master

Blockehain
Network
/ 2.1 peer invokes chaincode with proposal \
E] Application
1. connect to peer
2. invoke chaincode (proposal) 2.2 chaincode generates Peer
A query or update
3. proposal response proposal response
| %
H 5. ledger update event Chaincode
| Leeeo | 4.2 peer updates ledger
i using transaction blocks
4. request that transaction is ordered :4 1 Transactions sent - Ledger
to peers in blocks y
. Orderer

Peers, in conjunction with orderers, ensure that the ledger is kept up-to-date on every peer. In this example, application
A connects to P1 and invokes chaincode S1 to query or update the ledger L1. PI invokes S1 to generate a proposal
response that contains a query result or a proposed ledger update. Application A receives the proposal response and,
for queries, the process is now complete. For updates, A builds a transaction from all of the responses, which it sends
it to O1 for ordering. Ol collects transactions from across the network into blocks, and distributes these to all peers,
including P1. PI validates the transaction before applying to L1. Once LI is updated, P1 generates an event, received
by A, to signify completion.

A peer can return the results of a query to an application immediately since all of the information required to satisfy the
query is in the peer’s local copy of the ledger. Peers never consult with other peers in order to respond to a query from
an application. Applications can, however, connect to one or more peers to issue a query; for example, to corroborate
a result between multiple peers, or retrieve a more up-to-date result from a different peer if there’s a suspicion that
information might be out of date. In the diagram, you can see that ledger query is a simple three-step process.

An update transaction starts in the same way as a query transaction, but has two extra steps. Although ledger-updating
applications also connect to peers to invoke a chaincode, unlike with ledger-querying applications, an individual peer
cannot perform a ledger update at this time, because other peers must first agree to the change — a process called
consensus. Therefore, peers return to the application a proposed update — one that this peer would apply subject to
other peers’ prior agreement. The first extra step — step four — requires that applications send an appropriate set of
matching proposed updates to the entire network of peers as a transaction for commitment to their respective ledgers.
This is achieved by the application using an orderer to package transactions into blocks, and distribute them to the
entire network of peers, where they can be verified before being applied to each peer’s local copy of the ledger. As
this whole ordering processing takes some time to complete (seconds), the application is notified asynchronously, as
shown in step five.

Later in this section, you’ll learn more about the detailed nature of this ordering process — and for a really detailed
look at this process see the Transaction Flow topic.

4.10.4 Peers and Channels

Although this section is about peers rather than channels, it’s worth spending a little time understanding how peers
interact with each other, and with applications, via channels — a mechanism by which a set of components within a
blockchain network can communicate and transact privately.

These components are typically peer nodes, orderer nodes and applications and, by joining a channel, they agree to
collaborate to collectively share and manage identical copies of the ledger associated with that channel. Conceptually,
you can think of channels as being similar to groups of friends (though the members of a channel certainly don’t need

4.10. Peers 59

../txflow.html

hyperledger-fabricdocs Documentation, Release master

to be friends!). A person might have several groups of friends, with each group having activities they do together.
These groups might be totally separate (a group of work friends as compared to a group of hobby friends), or there
can be some crossover between them. Nevertheless, each group is its own entity, with “rules” of a kind.

Blockchain
/ \ @ Blockch: - Ledger
P1 @ Channel Application
L1
P2 PA Principal PA (e.g. A, P1)
|.1 n Peer ? communicates via
channel C.
p— C i
k y E] Chaincode

Channels allow a specific set of peers and applications to communicate with each other within a blockchain network.
In this example, application A can communicate directly with peers P1 and P2 using channel C. You can think of the
channel as a pathway for communications between particular applications and peers. (For simplicity, orderers are
not shown in this diagram, but must be present in a functioning network.)

We see that channels don’t exist in the same way that peers do — it’s more appropriate to think of a channel as a
logical structure that is formed by a collection of physical peers. It is vital to understand this point — peers provide
the control point for access to, and management of, channels.

4.10.5 Peers and Organizations

Now that you understand peers and their relationship to ledgers, chaincodes and channels, you’ll be able to see how
multiple organizations come together to form a blockchain network.

Blockchain networks are a